
Ontology-based Software Architecture Documentation

Klaas Andries de Graaf
VU University

ka.de.graaf@vu.nl

Antony Tang
Swinburne University of Technology

atang@ict.swin.edu.au

Peng Liang
Wuhan University
liangp@sklse.org

Hans van Vliet
VU University
hans@cs.vu.nl

Abstract—A common approach to software architecture
documentation in industry projects is the use of file-based
documents. This approach offers a single-dimensional per-
spective on the architectural knowledge contained. Knowledge
retrieval from file-based architecture documentation is efficient
if the perspective chosen fits the needs of the readers; it is
less so if the perspective does not match the needs of the
readers. In this paper we describe an approach aimed at ad-
dressing architecture documentation retrieval issues. We have
employed a software ontology in a semantic wiki optimized for
architecture documentation. We have evaluated this ontology-
based approach in a controlled industry experiment involving
software professionals. The efficiency and effectiveness of the
proposed approach is found to be better than that of the file-
based approach.

Keywords-software architecture documentation, software ar-
chitecture knowledge, architectural knowledge retrieval, soft-
ware ontologies, semantic wiki

I. INTRODUCTION

Bass et al. recognize in [1] that even a perfect architecture is
useless if it is not understood; proper documentation should
have enough detail, no ambiguity, and it must be organized
such that users can quickly find information. Documentation
of software architecture serves three important purposes: it
is used for education, system analysis, and it is the primary
vehicle for stakeholders communication [2]. Referring to
architecture documentation, Kruchten suggests that if it is
not documented, it does not exist [3], this is applicable to
both the knowledge contents and the ways the knowledge is
organized. In the software industry, it is common practice
to share and retrieve architectural knowledge using file-
based documents, diagrams, wiki systems, specialized tools
and the like. This documentation approach has not changed
for decades, however, it has various issues when retrieving
Architectural Knowledge (AK):

• The way architects structure a document is reflected in
its table of contents, which provides an index on the
AK. If the readers search for AK which is outside this
index, then the AK may not be easily found.

• Cross-referencing between different sections and doc-
uments, in order to make AK traceable, is difficult.
Tables can help, but are hard to maintain.

• If structuring of document content is not done prop-
erly, AK can become redundant and scattered across
architecture views, topics, and documents. This is hard

to prevent when AK evolves and when there are many
stakeholders with different needs for the AK.

These issues occur because file-based documents have a
linear organization of contents. The limited support for
structuring and indexing contents results in documents that
provide a single-dimensional perspective on AK.

In this paper we describe an approach aimed at addressing
these issues of file-based documentation. We follow up on
the approach to architecture documentation proposed in [4]
to implement a lightweight software ontology and a semantic
wiki tool. We refer to such an approach to architecture
documentation as an ’ontology-based’ approach.

We report on a controlled industry experiment in which
the ontology-based approach is compared to a file-based ap-
proach when software professionals retrieve AK. In this ex-
periment, software professionals were asked to find knowl-
edge about architectural elements such as subsystems, com-
ponents, interfaces, behaviour, requirements, and decisions
using both documentation approaches.

The experiment yields statistical significant evidence that
the ontology-based approach to architecture documentation
is more time-efficient for retrieving AK and in some cases
more effective. The ontology-based approach provides for a
classification of, and a multitude of relationships between,
knowledge elements to quickly locate the AK one is looking
for. The file-based documentation provides much less diverse
AK retrieval possibilities. Moreover, the ontology-based
approach forces one to be formal and consistent in labeling
knowledge elements, which further improves AK retrieval
efficiency and effectiveness.

In section II we provide the background on architecture
documentation approaches and challenges, and architecture
ontologies. In section III our ontology-based approach and
related work are described. Section IV provides details on
the experiment, section V on the findings, and section VI
on a questionnaire for the experiment. Threats to validity
are discussed in section VII. Section VIII reports our con-
clusions and future work.

II. BACKGROUND - ARCHITECTURE DOCUMENTATION

A. Architecture Documentation Approaches and Challenges

Parnas [5] argues that documents should be designed and
structured with separation of concerns in mind; each aspect

ka.de.graaf@vu.nl
atang@ict.swin.edu.au
liangp@sklse.org
hans@cs.vu.nl


of a system is described in one section. File-based architec-
ture documentation structures can achieve this separation by
using, for example, a view-based structure [1], [2], [6].

Each view provides a ’cross-section’ of AK. View-based
descriptions are useful to stakeholders who are interested in
different cross-sections of the knowledge about a system.
Cross-referencing of knowledge between views can ensure
that interrelated relevant knowledge is traceable and retriev-
able.

The separation of concerns achieved through a particular
set of architecture views makes the retrieval of certain
knowledge – knowledge contained in one view – relatively
easy, but at the same time it makes the retrieval of knowledge
scattered across views difficult. This is a wicked problem:
choosing a different set of views does not solve the issue,
but simply moves it elsewhere. This is recognized in [7],
where the notion of perspectives is introduced next to that
of views. Perspectives serve to organize specific types of
knowledge across views.

As the number of different stakeholders and their unique
needs for AK increase in large and complex projects, there is
also an increase in misalignment between the AK needed by
stakeholders and how they may retrieve this knowledge from
file-based documentation. In practice, most stakeholder con-
cerns are each addressed by a small documentation subset
that is different for each concern [8]. Extensive use of cross-
references between scattered knowledge or (alternatively)
redundant recording of knowledge in file-based documents
makes knowledge retrieval and maintenance impractical and
error prone, especially when knowledge evolves. A number
of AK retrieval challenges (adapted from [9]) exist.

1) Architecture documentation understanding
Document understandability becomes more challeng-
ing when documentation size increases in large and
complex systems [2]. Especially when stakeholders
have different backgrounds or use of language. The
original intention of the authors is often lost [9].

2) Locating relevant architectural knowledge
Knowledge is often spread over multiple documents
[10], and version mismatches (due to informal sharing)
as well as the lack of fine granularity in documents
make locating AK in architecture documents hard [9].

3) Support for traceability between different entities
Providing traceability between documentation sources
is difficult [11]. Text and tables are limited in com-
municating different relationships [9].

4) Support for change impact analysis
Making and changing decisions or requirements im-
pacts parts of the architecture. Because decisions and
their relationships are usually not explicit, it is often
very hard to reliably analyze and predict the impact
of the changes [9].

5) Assessment of design maturity
Architecture design is difficult to evaluate if there

is no status overview of the conceptual integrity,
correctness, completeness, and buildability of the ar-
chitecture [1], [12]. These qualities are inherent to the
architecture per se and the size and complexity of
architecture documentation directly influence qualities
themselves as well as their assessment [9].

6) Trust in the credibility of information
AK changes often in large and complex systems
and the cost to update is sometimes prohibitive [9],
especially in agile environments where change is fast
and documentation has less focus than in waterfall
environments. Documentation is quickly outdated and
stakeholders lose confidence in its credibility [13].

B. Software Architecture Ontologies

”An ontology” refers to a formal domain model describing
its concepts and relationships among concepts [14]. On-
tologies enable a hierarchical classification of interrelated
domain concepts and can for instance be represented using
an RDF Schema and the more expressive OWL. The use
of RDF makes ontologies human readable and machine-
interpretable, allowing querying of- and inference over
knowledge. Ontologies, RDF, and OWL are part of the
semantic web paradigm which aims to bring advances in
knowledge management to web-based systems [15].

Several ontologies and domain models have been pro-
posed in recent years for expressing AK as they can be used
to capture, manage, and share architectural design decisions
explicitly [16] as well as providing a common vocabulary
and a level of precision needed for making architecture
decisions [17].

III. ONTOLOGY-BASED DOCUMENTATION APPROACH

A. Lightweight Software Ontology

In this experiment, we use the lightweight software ontology
from [4] for annotating knowledge in requirement and
architecture documents. The lightweight software ontology
is designed to be flexible so that it can be adapted for specific
application domains. As intended in [4], the ontology was
adapted to suit the terminology and taxonomy used in the
industry experiment domain (see Figure 1).

We illustrate the ontology with a software development
scenario (the classes are marked boldface and the semantic
relationships are marked italic):

A software architect makes the decision that non-
functional requirement ’configurability’ should be realized
by the architecture. The decision results in behaviour ’user
preferences’ which satisfies the non-functional require-
ment ’configurability’ and a new functional requirement
’set user preference’. When a software engineer implements
behaviour ’user preferences’, s/he needs to know which
settings can be changed by and stored by this behaviour.
S/he also needs to know the interfaces that are neces-
sary to realize the behaviour as well as details on the



-Content

-Released

-Date

Wiki page

-Description

Functional Requirement -Identifier

-Description

Requirement

-Description

-Quality Attribute measure

Non-functional Requirement

-Description

Architecture

-Description

Subsystem

-Description

Component

-Description

Decision

and other QAs

-Description

Setting

-Description

Behavior

-Description

Interface

-Description

Diagram

realized by impacts

impacts

comprises of

is modeled in

<wikipage> contains knowledge about

depends on

realized by

results insatisfies

qual_is_related_to

knowledge is located in <wikipage>

changed by

stored by
interface offered byoffers interface

part of

Usability

Efficiency

decision is about

offers interface

interface offered by

-Description

Design Alternative

has alternative
req_is_related_to

Figure 1. Software ontology adapted for Océ experiment domain.

components and subsystems that offer these interfaces.
When implemented, the behaviour can be tested using the
requirements that are realized by the behaviour and under
various settings that impact it. Additional information about
such an ontology can be found in [18].

The semantic relationships defined in the ontology and
illustrated in the scenario above address challenge (3) Trace-
ability and (4) Change impact. Checking the existence of se-
mantic relationships, e.g., ’requirements and behaviour must
be realized by architecture elements’, addresses challenge
(5) Assessing design maturity.

B. ArchiMind semantic wiki

We used the OntoWiki tool [19] as the basis for the tool
in our ontology-based approach. OntoWiki allows for web-
based visualization and management of (ontology and its
instances in) knowledge bases in RDF. OntoWiki is similar
to existing wiki systems (e.g. Wikipedia). In addition, it
offers semantic-enhanced search facilities such as filtering,
faceting, and graph-like exploration of knowledge. OntoWiki
is open source and aims to support collaborative knowledge
engineering. We based our choice for OntoWiki on evalu-
ation of semantic wikis by Hoenderboom et al. [20] and
Tamburri [21].

Adaptations were made to OntoWiki to enhance the
system for input of architecture documentation and semantic
annotation of documentation content. We named the adapted
version ’ArchiMind’. File-based documentation from e.g.,
Word processors or e-mails, can be copied and pasted in a

WYSIWYG editor and stored as wikipages. The length of
copied documentation fragments, e.g., a paragraph, section,
or chapter, is variable to allow for a coarse or fine granular-
ity.

ArchiMind allows for semantic annotation of architectural
concepts (the classes in Figure 1) in text on wikipages,
described in detail in [22]. When a piece of text in wikipages
is annotated, a semantic relationship is created from the text
in wikipages to the AK instances in the ontology. The text
on the wikipages is highlighted and, when it is clicked on,
showing information about the architectural concept and its
semantic relationships to other AK instances. The semantic
annotation mechanism allows for locating (sources of) AK
and addresses issues with synonyms, homonyms, spelling er-
rors, abbreviations, ambiguity, and context-dependent inter-
pretation in architecture documentation text. This addresses
the challenges: (1) Architecture documentation understand-
ing and (2) Locating relevant architectural knowledge (See
section II-A).

Dublin Core [23] is used to describe documentation meta-
data; e.g., date and version of documentation sources de-
scribing AK give insight in whether they are up to date. Next
to the native version control in OntoWiki, also basic version
control of wikipages was implemented in ArchiMind. This
partially addresses challenge (6) Credibility of information.

C. Related Work

Su et al. proposed KaitoroBase [24], an architecture docu-
mentation exploration and localization tool, built on freebase



semantic wiki, for visualization and non-linear navigation
of SADs stored in wiki pages. A meta-model based on
Architecture Driven Design is used, however, there are no
clear details on whether the meta-model itself can be adapted
in the system and if it supports other types of architecture
documentation and concepts therein. Su et al. provide explo-
ration from a single node (say a single requirement), whereas
our approach allows exploration from a set of related nodes
(say all requirements realized by a component).

López et al. [25] proposed the Toeska Rationale Extrac-
tion (TREx) approach to recover, represent, and explore de-
sign rationale in text documents, including in-page semantic
annotation. Ontology-based representation of rationale and
architecture concepts is used. Their focus on rationale as
well as rationale knowledge exploration on HTML pages,
missing the benefits of a semantic wiki, is a difference to our
approach. Validation in a case study by measuring precision,
recall, and effort in time is similar to our experiment
setup, however, complete rationale recovery from an industry
corpus by students is used, as opposed to a specific question
set answered by industry professionals.

Jansen et al. [9] proposed a method and a tool which
allows users to semantically enrich content of MS Word
documents for increased architectural understanding and
capture AK from MS Excel and Python programs. A
separate knowledge explorer tool provides visualization of
annotated AK instances and their relationships. Knowledge
and documentation are represented in separate tools, as
opposed to our use of an integrated semantic wiki tool.
Validation was done on architectural understanding between
enriched and non-enriched file-based documentation both
viewed in MS Word.

Traditional wiki systems have been used in some software
organizations for architecture documentation. The use of tags
and categories can help in retrieving knowledge, however
tags quickly lose meaning when used arbitrarily. Categories
help in structuring knowledge but either are too static or have
high maintenance cost. Hyperlinks provide cross-referencing
but they lack the semantics that are necessary to express the
meaning of the relationships between architecture elements.

IV. EXPERIMENT SETUP

The experiment was conducted at the R&D department of
Océ, an international leader in digital document management
and a Canon Group company. The architecture documenta-
tion corpus used in the experiment belongs to the software
used in a series of document printing machines developed
at Océ R&D.
The primary experimental goals are:

• (A) evaluate the efficiency of the file-based approach
and the ontology-based approach to architecture docu-
mentation.

• (B) evaluate the effectiveness of the file-based approach

and the ontology-based approach to architecture docu-
mentation.

Participants in the experiment are all software professionals
at Océ R&D who are involved in the software development
process. Table 1 below gives the demographics of the
experiment participants.

Initial recruiting of participants was done by presenting
a voluntary sign-up list for the experiment at the end of a
presentation on architecture documentation at Océ by one of
the authors. The presentation was advertised using a mailing
list and posters. Recruiting also took place at the end of
each experiment by asking participants to recommend the
experiment to interested colleagues.

At the start of each experiment we informed participants
of confidentiality of their individual results to Océ and any
researchers other than the experiment supervisor.

The materials used in the experiment consist of a software
documentation corpus and questions about the AK in that
corpus that are to be answered by experiment participants.
The document corpus used in the experiment consists of
7 documents, 79 pages, 1794 paragraphs, 3183 lines, and
13,962 words in total.

The experiment document corpus is further specified into:
• Two Software Architecture Documents (SAD) of 3

and 9 pages, respectively. SADs detail the design of
functionality, behaviour, and components. One SAD
gives an overview of what knowledge can be found
in the other SAD.

• Four Software Behaviour Documents (SBD), ranging in
size from 8 to 18 pages. SBDs describe the behaviour of
software together with all requirements and settings for
that behaviour. One SBD describes all possible settings
for behaviour.

• One System Reference Document (Sysref), whose size
is 19 pages. The Sysref document details the high level
system design and decomposition, in terms of sub-
systems, components, and interfaces, and gives design
decisions and rationale on system design.

• One Design Document that contains three UML dia-
grams. The diagrams detail the design of subsystems,
components, and interfaces. The design document is
often more up to date than the Sysref document that
partially details the same knowledge.

These documents form a representative subset of the avail-
able types of documents. Three Océ software professionals
verified and confirmed that the data set was representative
of their usual practice. Question 6 in Table V, belonging to
a questionnaire after each experiment session, confirms this.

The documents are a mixture of rather formal text, as
in ”REQ123-Behaviour X must allow users to login using
interface Y”, where requirements are numbered and prefixed
with ”REQ”. At other places, descriptions of, say, settings
and components involved in behaviour, are not easily recog-
nized (their type is not clearly indicated, or their occurrence



Number of Primary role of Average years in Average years Average years
participants participants role at Océ in role working at Océ

6 Domain architect 3.27 3.27 10.08
5 Software engineer 6.47 6.81 7.47
5 Software project manager 3.83 5 14
4 Product- or system test engineer 9.75 11.75 11.625
4 Workflow architect 7.25 7.25 18.75
1 Configuration manager 3 10 3 (via external agency)
1 Software designer 1 1 1

Table I
EXPERIMENT PARTICIPANTS DEMOGRAPHICS

is not clear from the document structure); we call the latter
informal.

The documents were entered in ArchiMind as wikipages.
We then identified and annotated 214 instances using the
ontology presented in Figure 1, namely;

• 27 wikipages and 3 diagrams
• 45 functional- and no non-functional requirements
• 22 decisions and 3 alternative decisions
• 19 subsystems, 66 interfaces, and 15 components
• 8 settings and 6 behaviours

The annotations were verified by two software professionals
from Océ during a pilot study, by asking whether specific
AK instances were correctly classified (corresponding to an
ontology class) and correctly interrelated by semantic rela-
tionships such as ”requirement X is realized by component
Y” and ”decision X is about setting Y”.

From the questionnaire (see also Section VI) we identified
the main uses of documentation by our participants. Domain
architects, workflow architects, project managers are the
most intensive users of all types of architecture documen-
tation. Software engineers are regular users of most types
of documentation. The configuration manager uses SADs
and SBDs and the software designer uses SBDs, SADs,
and interface proposals. Product- and system test engineers
are mostly interested in requirements, behaviour, and impact
analysis but less interested in architecture and design as they
view the software system as a black box.

We devised a question set for the experiment based on
the annotated AK instances in the documents. We devised 4
question types and 7 concrete questions. The questions have
been obfuscated for non-disclosure reasons: ’XX’, ’YY’,
’ZZ’, and ’QQ’ replace an actual software entity or concept.
Two software professionals participated in a pilot experiment
to evaluate, test, and improve the questions.

The questions used are the following:
• 1A: Which settings have an impact on behaviour ”XX”?
• 1B: Which settings have an impact on behaviour ”YY”?
• 2: Which requirements for behaviour ”XX” should be

satisfied (realized) by component ”YY”?

• 3A: Which decisions have been made around compo-
nent ”XX”?

• 3B: Which decisions have been made on the configu-
ration of behaviour ”XX”, ”YY”, ”ZZ”, and ”QQ”?

• 4A: Which subsystem is interface ”XX” part of?
• 4B: Which other interfaces are offered by this subsys-

tem?

Experiment participants answered these questions using ei-
ther the ontology-based approach or the file-based approach.
They were asked to think aloud, verbally state their answers,
and indicate when they were satisfied with the correctness
of- and time spent on an answer. Participants were instructed
that this satisfaction should reflect their normal way of
working.

We formulated the following null and alternative hypoth-
esis for experiment goal A and B;
H0A = There is no difference in time-efficiency between
the use of the ontology-based and file-based approach for
answering experiment questions.
H1A = The use of the ontology-based approach for an-
swering experiment questions results in better time-efficiency
than the use of the file-based approach.
H0B = There is no difference in effectiveness between
the use of the ontology-based and file-based approach for
answering experiment questions.
H1B = The use of the ontology-based approach for
answering experiment questions results in higher
effectiveness than the use of the file-based approach.

Two independent variables (or ’predictor variables’) are used
in the experiment, namely the file-based and the ontology-
based approach to architecture documentation. Two depen-
dent variables (or ’response variables’) are used in the
experiment. Time is used as a measure of efficiency. The
harmonic mean of precision and recall, the F1 score,
introduced by van Rijsbergen in [26], is used for measuring
effectiveness:

F1score = 2 ∗ Precision ∗ Recall

Precision + Recall



where recall is the proportion of relevant items retrieved
from the total set of relevant items in a system and precision
is the proportion of retrieved items that is relevant in a result
set. The relevancy of items, or ’ground truth’, was verified
with two Océ professionals.

Using the Shapiro-Wilk and Kolmogorov-Smirnov tests,
we found that our measurements from the experiment are
not normally distributed. Therefore we applied the non-
parametric Mann-Whitney-Wilcoxon test to the experiment
data. One-tailed tests for each experiment question are
reported in the next section. We report statistical significance
at the 0.05 level.

We designed our experiment to be executed in two
versions; both experiment versions 1 and 2 included an
introduction and procedure (or ’protocol’) at the start and
a questionnaire at the end. Version 1 starts with a tutorial
on the use of ArchiMind, questions 1 and 2 to be answered
with the ontology-based approach, and questions 3 and 4
to be answered with file-based documentation. Version 2
starts with questions 1 and 2 to be answered with file-
based documentation approach, the ArchiMind tutorial, and
questions 3 and 4 to be answered with the ontology-based
approach. This design is aimed at reducing any biases that
may arise from the selection of subjects in a treatment group
and a control group.

Consecutive participants in the experiment were alternated
between the two versions of the experiment. Because Archi-
Mind was new to the participants, a tutorial was used to
train the participants. To prevent the participants getting
preconceived ideas on how to formulate a query, the tutorial
did not contain architecture documentation and knowledge
used for answering questions posed in the experiment.

We chose to execute the experiment with each participant
individually in a meeting room, because executing the exper-
iment at the desks of participants would introduce distraction
for them and entropy in the experiment.

V. EXPERIMENT FINDINGS

In this section we report the statistical test results and the
analysis of our experiment.

A. Knowledge Retrieval Efficiency

The average time in seconds, required for answering each
question when using the ontology-based approach and file-
based approach, as well as the difference in time between
the two approaches, is listed in Table II.

All results, except those for question 4A, are statistically
significant as can be seen from table III. Consequently, we
reject the null hypothesis H0A and accept the alternative
hypothesis H1A for all questions except 4A.

Question 1A and 1B can be answered from a SBD that
details on settings for all behaviour. The settings for the
relevant behaviour are also documented in two SBDs that
detail on either behaviour XX or YY. Almost all participants

used the latter SBDs for answering 1A and 1B and they did
not use the settings document. The two SBDs did not provide
structure for retrieving settings, e.g. a dedicated settings
section, and settings were informally recorded. This made
it hard for participants to find settings quickly. Question 1
can be answered in ArchiMind using the impacts semantic
relationship.

Question 2 can be answered from one SBD which con-
tains the requirements for behaviour XX. The components
that realize requirements are explicitly mentioned in the
requirements themselves, however many participants read
the requirement text to verify whether a component is
actually involved in realizing the requirement. The structure
of the SBD does not give information on where to find
the requirements that are specifically realized by component
YY. Question 2 can be answered in ArchiMind using the
semantic relationships satisfies and realized by.

Question 3A can be answered using the system reference
document which contains some sections on rationale. These
sections are however structured on a subsystem level and
not on a component level. Participants would either have to
know to which subsystem component XX belongs or use
a keyword search. Keyword search is not very efficient as
the component is mentioned multiple times throughout the
document. Question 3B can be answered from one of the
SBDs where it is explicitly described in an appendix. Various
participants had trouble finding the decision quickly as it was
only described in one of the behaviour documents, whilst
the decision impacts behaviour described in three SBDs
available in the experiment document corpus. Question 3
can be answered in ArchiMind using the semantic relation
decision is about.

The answer to question 4A was quickly found by most
participants using a keyword-search in the system reference
document. Question 4B can be answered from the system
reference document, however, most participants would also
check the UML diagrams in the design document. This
since they are aware that the latest changes are reflected
in the UML diagrams and the system reference document
could be outdated. The UML diagrams however depict the
entire system consisting of 66 interfaces and 19 subsystems.
This made it difficult for participants to locate the interface
and subsystem found in question 4A as they would have
to recognize the subsystem or interface visually from the
diagram. Question 4 can be answered in ArchiMind using
the semantic relationships offers interface and interface
offered by.

Informal recording of AK and an unoptimized document
structure for retrieving AK in the file-based documentation
is a feasible explanation for the significant difference in
time between the ontology-based and file-based approach
for questions 1, 2, and 3. The presence of outdated infor-
mation and unfamiliar diagram notations could explain the
significant result for question 4B.



Question 1A 1B 2 3A 3B 4A 4B

Time ontology-based approach 161 157 229 148 197 73 40
Time file-based approach 394 212 382 401 374 78 64
Difference (in seconds) 233 55 153 253 178 5 24

Table II
AVERAGE TIME IN SECONDS REQUIRED PER QUESTION AND DIFFERENCE

Question p-value

1A: Which settings have an impact on Behaviour XX? 0.0092
1B: Which settings have an impact on Behaviour YY? 0.0324

2: Which requirements for Behaviour XX (should be) satisfied (realized) by component YY? 0.0060
3A: Which decisions have been made around component XX? 0.0001

3B: Which decisions have been made on the configuration of Behaviour XX, YY, ZZ and QQ? 0.0013
4A: Of which subsystem is interface XX part of? 0.5510

4B: Which other interfaces are offered by this subsystem? 0.0156

Table III
STATISTICAL TEST RESULTS FOR TIME PER QUESTION

Question p-value

1A: Which settings have an impact on behaviour XX? 0.3790
1B: Which settings have an impact on behaviour YY? 0.0306

2: Which requirements for behaviour XX should be satisfied (realized) by component YY? 0.0589
3A: Which decisions have been made around component X? 0.0112

3B: Which decisions have been made on the configuration of behaviour XX, YY, ZZ, and QQ? 0.0504
4A: Of which subsystem is interface XX part of? 0.1650

4B: Which other interfaces are offered by this subsystem? 0.0478

Table IV
STATISTICAL TEST RESULTS FOR F1-SCORES PER QUESTION

B. Knowledge Retrieval Effectiveness

A higher average F1 score was observed for all questions
answered by the ontology-based approach in the experiment.

As can be seen from Table IV, the difference in F1
score between the ontology-based approach and file-based
approach is statistically significant for questions 1B, 3A, and
4B, with p=0.0306, p=0.0112, and p=0.0478 respectively.
Consequently, we reject the null hypothesis H0B and accept
the alternative H1B for questions 1B, 3A, and 4B.

The difference in significance between questions 1A
(insignificant with p=0.3790) and 1B (significant with
p=0.0306) is interesting as these two questions are very
similar. Both can be answered from SBDs and both have
the same amount of correct answers, namely, two settings.
We observed that the settings for question 1B were recorded
in a more obscure and informal way, as compared to settings
for question 1A. This seems a plausible explanation for
why question 1B is statistically significant and question
1A is not. This could indicate that settings are not always

documented consistently and explicit enough in SBDs and
that this affects the effectiveness of knowledge retrieval from
those documents.

The difference in significance between questions 3A
(p=0.0112) and 3B (p=0.0504) is most likely caused by
the structuring and informal notation in the file-based doc-
uments. Because rationale is structured by sections per
subsystem in the system reference document, it is hard to
find the decisions for a specific component. Also, it was not
explicitly documented whether a decision was made about
a component or whether this component was mentioned as
a part of background information. The answer to question
3B was recorded in an appendix in one of three behaviour
documents that contain the answer. This was the only
document that contains an appendix on design rationale.
Also the table of contents lists the appendix clearly as having
design rationale. This seems a feasible explanation for why
the answer to question 3B is retrieved relatively correctly by
participants.



Question 4B was in some cases incorrectly answered due
to misinterpretation of UML notations. Also, as the docu-
ment corpus was from an active project in the development
phase, the latest changes in the architecture are reflected in
the UML diagrams and the system reference was outdated
at some places. One participant was unaware of this and the
others used the UML diagrams for verifying the correctness
of the answer found in the system reference. Annotating
these documents forced us to make it explicit in the semantic
wiki whether AK was outdated between documents.

The answers to questions 2 and 4a were documented
in a relatively formal and structured way in the file-based
documentations, and therefore easy to retrieve.

The above evidence indicates that there is a significant
difference in effectiveness between the ontology-based and
file-based approach when AK must be retrieved that is
informally documented or when the file-based document
structure is not optimal for retrieving this AK. Also the
presence of unfamiliar notations and outdated AK is an
explanation for the difference in effectiveness between the
two approaches for question 4.

VI. QUESTIONNAIRE

After the experiment we asked each participant to fill in a
questionnaire to collect qualitative evaluations on the file-
based approach and the ontology-based approach (referred
to as semantic wiki here). The questions, answers, and
elaborations are reported in Table V.

The main source of software knowledge are ’colleagues’
for most participants. Participants often stated during the
experiment that they normally consult with their colleagues
when documentation does not provide a clear answer.

VII. THREATS TO VALIDITY

We used [27] for designing the experiment and guidelines
from [28] for reporting. In our experiment plan, we ac-
counted for possible threats during the experiment design.

A. Construct validity

We recorded time to evaluate knowledge retrieval efficiency.
Evaluating efficiency by the (intellectual) effort required [26]
is much harder to do precisely and objectively. Time also
largely represents the costs of using one of the approaches.

The F1 score is used to evaluate effectiveness as ”there is
no absolute sense in which one can say that one particular
pair of precision-recall values is better or worse than some
other pair, or, for that matter, that they are comparable at
all” [26]. Retrieval of an irrelevant AK (precision) and lack
of relevant AK (recall) is considered as equally ineffective
when evaluating experiment results.

B. Internal validity

The role distribution of experiment participants in Table I
shows that a population selection bias based on role is un-
likely. On average, our participants have worked in their role
for 5.75 years and have been employed for almost 12 years at
Océ. This gives confidence that experiment participants are
familiar with documentation approaches at Océ. Participants
who signed up for the experiment during the presentation
might have introduced a selection bias as they might have a
positive attitude towards any documentation approach other
than the current approach used at Océ.

A subset of the documentation from one particular project
was used. Participants from that project had, more than
other participants, prior knowledge of this documentation.
However, the type of documentation used as well as the
type of questions asked were generic. To avoid any bias,
participants were not informed about how much and pre-
cisely which documentation was present in the subset and
they were instructed to always find and verify answers in
the experiment documentation despite any prior knowledge.
Participants would first have to verify prior knowledge as it
might not be in the used documentation subset.

The questions asked during the experiment are all sup-
ported by the software ontology, i.e. the questions posed in
the experiment are about AK that corresponds to the classes
and relations defined in the ontology. This limits our results
as they cannot be replicated when AK needs to be retrieved
that is unsupported by the ontology or when the class and
type of this AK are unknown.

We took care to make sure that ArchiMind did not contain
more or less architectural information, content wise, than is
in the file-based documentation against which it is compared.

In the document corpus provided for the experiment the
description of interfaces, required for question 4B, was out-
dated in the system reference document. Océ professionals
verified that presence of outdated documents is a common
situation, e.g., during development. Questionnaire results
also confirm this. We chose to not update any AK in order
for the experiment document corpus to be realistic.

C. External validity

The experiment was conducted at one company which means
the findings are specific and cannot be generalized beyond
this study. The specific set of questions asked in the exper-
iment also limits generalization. The use of SADs, SBDs,
system reference-, and design documents can be considered
generic documentation practice in industry.

D. Conclusion validity

As the data collected in the experiment is not normally
distributed, we cannot calculate statistical power under the
assumption of normal distribution. The increased chance of
a Type II error (false negative), when using a non-parametric
test on normally distributed data, does not apply here [29].



1 When searching for software knowledge, would you evaluate the semantic wiki, as compared to using normal documentation, as:
Better - 24 (92.3%) Worse - 0 (0%) Making no difference - 2 (7.7%)

Comments: Most participants find (semantic) relationships important and useful when searching software knowledge. Also the
provided search mechanisms, facets, structure, and (centralized) accessibility are elaborations given by participants.

2 Do you experience troubles in your daily job at Océ when searching for software knowledge using the standard documents? 1

Yes - 23 (88.5%) No - 3 (11.5%)
Comments: Most participants mention that documentation is often outdated. Other elaborations are that documentation is incomplete,

indeterministic, difficult to access or even hidden, contained in (too) many (scattered) sources, hard to verify whether
trustworthy, costly to keep up to date, lacks detailed information, and has conflicting requirements.

3 Do you think that the semantic wiki can provide you with better search mechanisms than you currently have at your disposal?
Yes - 25 (96.2%) No - 0 (0%) I do not know - 0 (0%) No opinion on this - 1 (3.8%)

Comments: Most participants mention that the semantic relationships are useful for searching.

4 Do you think it’s worthwhile to set up a semantic wiki at Océ for searching software knowledge & documentation management?
Yes - 17.5 (67.3%) No - 2 (7.7%) I do not know - 6.5 (25%) No opinion on this - 0 (0%)

Comments: Most participants comment they do not know whether the benefits of the ontology-based approach outweighs the costs.
Other elaborations given are that enough effort should be invested, authorization should not be an obstacle, training
should be provided and that the knowledge in the system should be complete, maintained well and reviewed by an
expert. One participant chose both options ’yes’ (for management) and ’I do not know’ (for searching).

5 From which sources do you normally get knowledge about the software made at Océ?
Answers: Most often mentioned are colleagues and after that documents, source code, Sharepoint, Docfinder, and CM Synergy.

6 From which types of documents do you normally get knowledge about the software made at Océ?
Answers: Most participants use SBDs. Also SADs, interface- and functional specifications, diagrams, technical reports and source

code are used as well as impact analysis-, high level architecture-, system reference-, and module design documents.

7 What percentage of your time do you daily spend on searching and retrieving software knowledge?
Answers: 19.75%. The answers range from 0% to ’50% or more’. This question was answered by half of the participants

Table V
QUESTIONNAIRE RESULTS

VIII. CONCLUSIONS AND FUTURE WORK

The major contribution of this work is the empirical evidence
to demonstrate that the use of an ontology-based approach
to architecture documentation is more efficient and effective
in retrieving AK than the use of a file-based approach. The
document structure reflects a single-dimensional perspective
that is inherent to file-based documents, and that limits
efficient and effective knowledge retrieval. Moreover, the
ontology-based approach forces one to be more formal
when annotating relevant knowledge elements (such as
component, interface, behaviour), which further improves
retrieval efficiency and effectiveness. The limitations of AK
structuring and description in file-based documents can thus
be overcome by the ontology-based approach.

The participants indicated that they often rely on their
colleagues for knowledge retrieval, especially when they are
not satisfied with results from the available documentation.
Many participants evaluate the ontology-based approach as
better for retrieving knowledge than the file-based approach.

Though the results of this study have indicated that
ontology-based AKM approaches hold a promising future,
there are yet many more challenges to overcome. We
plan to investigate into semi-automatic input (annotation)
of knowledge using NLP, parsing, and form-based user

input. Knowledge representation for personalization, as well
as knowledge communication using some Push & Pull
mechanisms will also be areas of investigations. Comparison
between ontology-based- and hypertext-based approaches to
software architecture documentation will be future work.

ACKNOWLEDGEMENTS

The authors wish to thank Wim Couwenberg, Pieter Verduin,
Amar Kalloe, and the other good folks at Océ R&D for
their support, interest to participate in this research, and
excellent insights. Also thanks to Jonathan Rebel, Ruben
Hartog, and Berend van Veenendaal for their adaptations
to OntoWiki. This research has been partially sponsored by
the Dutch ”Regeling Kenniswerkers”, project KWR09164,
”Stephenson: Architecture knowledge sharing practices in
software product lines for print systems” and by the Natural
Science Foundation of China (NSFC) project No. 61170025
”KeSRAD: Knowledge-enabled Software Requirements to
Architecture Documentation”.

1Océ successfully applies an agile development methodology to encour-
age creativity and productivity. The drive to deliver business results is
strong, and this takes precedence over writing excessive documentation.



REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 2nd ed. Addison-Wesley, 2003.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford, Documenting Software
Architectures: Views and Beyond. Addison-Wesley, 2002.

[3] P. Kruchten, “Documentation of software architecture from a
knowledge management perspective - design representation,”
in Software Architecture Knowledge Management. Springer,
2009, pp. 39–57.

[4] A. Tang, P. Liang, and H. van Vliet, “Software architecture
documentation: The road ahead,” in Proceedings of the 9th
Working IEEE/IFIP Conference on Software Architecture
WICSA ’11. IEEE Computer Society, 2011, pp. 252–255.

[5] D. Parnas and P. Clements, “A rational design process:
How and why to fake it,” in Formal Methods and Software
Development. Springer LNCS, 1985, vol. 186, pp. 80–100.

[6] “IEEE recommended practice for architectural description of
software-intensive systems,” IEEE Std 1471-2000, 2000.

[7] N. Rozanski and E. Woods, Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspec-
tives. Addison-Wesley Professional, 2005.

[8] H. Koning and H. van Vliet, “Real-life it architecture design
reports and their relation to ieee std 1471 stakeholders and
concerns,” Automated Software Engg., vol. 13, no. 2, pp. 201–
223, April 2006.

[9] A. Jansen, P. Avgeriou, and J. S. van der Ven, “Enriching
software architecture documentation,” J. Syst. Softw., vol. 82,
no. 8, pp. 1232–1248, August 2009.

[10] R. C. de Boer and H. van Vliet, “Architectural knowledge
discovery with latent semantic analysis: Constructing a read-
ing guide for software product audits,” J. Syst. Softw., vol. 81,
no. 9, pp. 1456–1469, September 2008.

[11] C. Hofmeister, R. Nord, and D. Soni, Applied software
architecture. Addison-Wesley, 2000.

[12] J. S. van der Ven, A. Jansen, P. Avgeriou, and D. K.
Hammer, “Using architectural decisions,” in Proceedings of
the 2nd International Conference on the Quality of Software
Architectures (QoSA). Karlsruhe University Press, 2006.

[13] T. C. Lethbridge, J. Singer, and A. Forward, “How software
engineers use documentation: The state of the practice,” IEEE
Softw., vol. 20, no. 6, pp. 35–39, November 2003.

[14] C. López, P. Inostroza, L. M. Cysneiros, and H. Astudillo,
“Visualization and comparison of architecture rationale with
semantic web technologies,” J. Syst. Softw., vol. 82, pp. 1198–
1210, August 2009.

[15] G. Antoniou and F. van Harmelen, A Semantic Web Primer,
2nd ed. MIT Press, 2008.

[16] M. Shahin, P. Liang, and M. Khayyambashi, “Architectural
design decision: Existing models and tools,” in Proceedings
of the 9th Working IEEE/IFIP Conference on Software Ar-
chitecture WICSA’09. IEEE Computer Society, 2009, pp.
293–296.

[17] A. Akerman and J. Tyree, “Using ontology to support devel-
opment of software architectures,” IBM Syst. J., vol. 45, pp.
813–825, October 2006.

[18] A. Tang, P. Liang, V. Clerc, and H. van Vliet, “Supporting co-
evolving architectural requirements and design through trace-
ability and reasoning,” in Relating Software Requirements to
Software Architecture. Springer, 2011, pp. 59 – 85.

[19] S. Auer, S. Dietzold, and T. Riechert, “Ontowiki a tool for
social, semantic collaboration,” in 5th International Semantic
Web Conference ISWC2006. Springer LNCS, 2006, vol.
4273, pp. 736–749.

[20] B. Hoenderboom and P. Liang, “A survey of semantic
wikis for requirements engineering,” SEARCH, University of
Groningen, Tech. Rep., 2009.

[21] D. A. Tamburri, “An architecture description viewpoint wiki
based on the semantic web paradigm,” Master’s thesis, 2010.

[22] K. A. de Graaf, “Annotating software documentation in
semantic wikis,” in Proceedings of the fourth workshop
on Exploiting semantic annotations in information retrieval
ESAIR’11. ACM, 2011, pp. 5–6.

[23] J. Kunze and T. Baker, “Dublin core metadata element set,
version 1.1,” Internet Engineering Task Force, Tech. Rep.
RFC 5013, 2007.

[24] M. T. Su, C. Hirsch, and J. Hosking, “Kaitorobase: Visual
exploration of software architecture documents,” in Proceed-
ings of the 24th IEEE/ACM International Conference on
Automated Software Engineering ASE’09. IEEE Computer
Society, 2009, pp. 657–659.

[25] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros,
“Bridging the gap between software architecture rationale
formalisms and actual architecture documents: An ontology-
driven approach,” Science of Computer Programming, vol. 77,
no. 1, pp. 66–80, January 2012.

[26] C. van Rijsbergen, Information Retrieval, 2nd ed. Butter-
worths & Co, 1979.

[27] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Em-
pirical Software Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[28] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting
Experiments in Software Engineering,” in Guide to Advanced
Empirical Software Engineering. Springer London, 2008,
ch. 8, pp. 201–228.

[29] A. Field, Discovering Statistics Using SPSS - 2nd Edition.
Sage Publications, 2005.


	Introduction
	Background - Architecture Documentation
	Architecture Documentation Approaches and Challenges
	Software Architecture Ontologies

	Ontology-Based Documentation Approach
	Lightweight Software Ontology
	ArchiMind semantic wiki
	Related Work

	Experiment setup
	Experiment Findings
	Knowledge Retrieval Efficiency 
	Knowledge Retrieval Effectiveness

	Questionnaire
	Threats to validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity

	Conclusions and future work
	References

