
Ontology-based Software Architecture
Documentation

Klaas Andries de Graaf

2015

SIKS Dissertation Series No. 2015-15

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

This research has been partially sponsored by:
The Dutch “Regeling Kenniswerkers”, project KWR09164, “Stephenson: Archi-
tecture knowledge sharing practices in software product lines for print systems”.
The Natural Science Foundation of China (NSFC), project No. 61170025, “KeSRAD:
Knowledge-enabled Software Requirements to Architecture Documentation”.

Promotiecommissie:
prof. dr. Rafael Capilla (King Juan Carlos University)
prof. dr. Paris Avgeriou (University of Groningen (RuG))
prof. dr. Dick Bulterman (VU University Amsterdam,

Centrum Wiskunde & Informatica)
prof. dr. Patricia Lago (VU University Amsterdam)
dr. Remco de Boer (ArchiXL)

ISBN 978-94-6295-145-7

Copyright c© 2015, Klaas Andries de Graaf
All rights reserved unless otherwise stated.

Cover design and typeset in LATEX by by author
Cover illustration ’Boekdrukkunst’ ca. 1589 - ca. 1593, printmaking and publish-
ing by Philips Galle, Antwerp. Based on design of Jan van der Straet. Source:
Rijksmuseum, Amsterdam
Printed and published by Proefschriftmaken.nl || Uitgeverij BOXPress, ’s-Her-
togenbosch

VRIJE UNIVERSITEIT

Ontology-based Software Architecture Documentation

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. F.A van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen

op maandag 11 mei 2015 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Klaas Andries de Graaf

geboren te Middelburg

promotor: prof.dr. J.C. van Vliet
copromotoren: dr. A. Tang

dr. P. Liang

Acknowledgements

I want to express my gratitude towards the people involved in my doctoral stud-
ies. I am grateful for the guidance by my advisors; Hans van Vliet, Antony Tang,
and Peng Liang. Hans, thanks for your continuing support, guidance, book rec-
ommendations, and for teaching me how to think and write more clearly. Antony,
thanks for your friendly advice, teachings, Skype calls, and the visits across the
world. Peng, thanks for the good discussions, teachings, many improvements,
and our talks about research, language, and history.

Thanks to several of my colleagues at VU University Amsterdam; Patricia Lago,
Christina Manteli, Damian Andrew Tamburri, Maryam Razavian, Giuseppe Pro-
caccianti, Han van der Aa, Rahul Premraj, Nelly Condori-Fernandez, and Rinke
Hoekstra. Especially thanks to Patricia for her support and advice before, during,
and after my PhD. Thanks Christina, for your help as well as the gezelligheid in
the office and during TA duty. Thanks Damian, for the XP and quests. Thanks
Maryam, for the gezelligheid, order, and plants in the office. Also thanks to
Willem van Hage for the successful collaboration. Thanks to Elly Lammers, Car-
oline Waij, Kris de Jong, and Mojca Lovrencak for the nice talks and for helping
me with the necessary procedures. Thanks to the friendly people from computer
support and the FEW helpdesk. Thanks to the friendly people at Swinburne
University of Technology for my pleasant stay there.

Many thanks to René Laan, Wim Couwenberg, John Kesseler, Pieter Verduin,
Amar Kalloe, and the other good folks at Océ R&D for their support, inter-
est, participation, and excellent insights which contributed to this thesis. Many
thanks to the good folks at LaiAn that contributed to the research in this the-
sis. Thanks to Jonathan Rebel, Ruben Hartog, and Berend van Veenendaal for
their adaptations to OntoWiki. Thanks to the students that participated in the
experiment during the 2012 Software Architecture course at the University of
Amsterdam. Thanks to the reading committee, anonymous reviewers, and edi-
tors for evaluating this thesis or one of the papers used in this thesis.

Thanks to my parents, Roelof and Marrie, for supporting my studies and giv-
ing me early access to computers, software, books, bibles, work, museums, etc.
Thanks to Gerrit for his advice on pursuing a PhD. Thanks to Willem, Hans, and
Bram for coping with my absent mind in the past 4 years and for not harassing
me too much.

Contents

1 Introduction 1
1.1 Software Development and Documentation 1
1.2 Software Architecture Documentation 2
1.3 Research Motivation . 3
1.4 Research Questions . 5
1.5 Research Approach . 6
1.6 Thesis Chapters . 10
1.7 Publications . 12

2 Searching Architectural Knowledge in File-based Documenta-
tion 15
2.1 Introduction . 15
2.2 Design and Analysis of Search Behaviour Study 17
2.3 Using Prior Knowledge to Search under Uncertainty 25
2.4 Lessons Learnt . 32
2.5 Threats to Validity . 34
2.6 Related Work . 35
2.7 Conclusions . 36

3 Organising and Retrieving Architectural Knowledge in File-based
Documentation 39
3.1 File-Based Documentation and its Issues 39
3.2 Hypertext Documentation and Its Issues 42
3.3 Conclusion . 43

4 Ontology-based Architecture Documentation Approach 45
4.1 Software Architecture Ontologies 45
4.2 ArchiMind Semantic Wiki . 48
4.3 Annotating SA Documentation in ArchiMind 51
4.4 Related Work . 54
4.5 Conclusion . 55

5 An Exploratory Study on Ontology Engineering for Architecture
Documentation 57
5.1 Introduction . 57
5.2 Background . 59
5.3 Ontology Engineering using the ’Typical Question’ Approach . . . 61
5.4 Contextual Factors in Ontology Engineering 67
5.5 Case Study . 72

i

CONTENTS

5.6 Related Work . 78
5.7 Conclusions and Future Work . 80

6 How Organisation of Architecture Documentation Influences Knowl-
edge Retrieval 83
6.1 AK Retrieval Efficiency and Effectiveness 85
6.2 How AK Organisation Affects AK Retrieval 97
6.3 Qualitative Evaluation . 107
6.4 Cost-Benefit Analysis . 111
6.5 Threats to Validity . 113
6.6 Implications . 116
6.7 Related Work . 118
6.8 Conclusions . 118

7 Supporting Architecture Documentation: A Comparison of On-
tologies for Knowledge Retrieval 121
7.1 Introduction . 121
7.2 AK Retrieval Experiment . 123
7.3 AK Organisation and AK Retrieval 132
7.4 Discussion . 137
7.5 Threats to Validity . 138
7.6 Conclusions . 139

8 Conclusions 141
8.1 Contributions . 141
8.2 Innovative Aspects . 144
8.3 Discussion and Future Work . 144

9 Samenvatting 149

SIKS Dissertatiereeks 155

Bibliography 186

Abbreviations 187

ii

1
Introduction

Software has enabled progress in many fields and is increasingly affecting our lives
and society as a whole. Software is used in computers, communication networks,
medical devices, factories, planes, trains, cars, mobile phones, household appli-
ances, etcetera. Software systems that are badly designed, built, or maintained
can malfunction and become slow, unsafe, and unreliable, which in turn results
in the loss of information, time, money, or lives.

It is important that software systems operate as intended, however, software de-
velopment is not trivial. Developing a single software system may require years of
work by hundreds of professionals on several million lines of programming code.
In this thesis we investigate whether we can improve the retrieval of knowledge
from documentation that professionals use during software development.

1.1 Software Development and Documentation

The development of large software systems involves multiple software profes-
sionals that work together within a project. Software development activities in
projects are planned in phases, e.g., in a requirement, design, and implementation
phase, and in iterative cycles. Systematic development of software is part of soft-
ware engineering, which can be defined as "the systematic application of scientific
and technological knowledge, methods, and experience to the design, implemen-
tation, testing, and documentation of software" [1], i.e., an engineering approach
to software development.

The concept of software engineering was first introduced and discussed during
the 1968 NATO software engineering Conference [71]. The increasing need for
software, demands on its operation, and problems in developing large systems

1

CHAPTER 1. INTRODUCTION

required an evaluation of existing software development practices and education.
Several conference attendees stressed that good documentation led to better soft-
ware, with fewer errors and better design, and was invaluable for maintenance.

Software projects have documented deliverables such as requirement and design
specifications. The documentation is used for communicating knowledge among
professionals, especially if they work in different project phases, locations, and
across different time zones. Professionals retrieve documented knowledge in or-
der to co-develop a software system. Even in Agile development, where working
software is valued over comprehensive documentation, practitioners regard doc-
umentation as important for their tasks and experience a lack of documentation
[92].

It is generally agreed that documentation is essential for software development.
Bad documentation causes inefficiency and errors throughout the development
life-cycle [77], however, there is still much room for improving documentation
practices [117]. Parnas argues [77] that software documentation is a "perpetually
unpopular topic", and that software professionals do not write precise documen-
tation compared to engineers in other disciplines.

1.2 Software Architecture Documentation

An early activity in the system development life-cycle is to specify the Software
Architecture (SA) of a system. The SA of a system can be defined as "the set of
structures needed to reason about the system, which comprise software elements,
relations among them, and properties of both" [9]. In an SA design the system is
decomposed into interacting components to realize functional and non-functional
requirements (e.g., performance and reliability), constraints of the technical and
organisational environment, work breakdown, budget, planning, component re-
use, and families of systems [116].

Documentation of SA serves three important purposes: it is used for system
analysis, education, and it is the primary vehicle for communication between
stakeholders in a project [21]. Architectural Knowledge (AK) is contained in
SA documentation. AK can be defined as "the integrated representation of the
software architecture of a software-intensive system (or a family of systems), the
architectural design decisions, and the external context/environment" [64].

SA documentation is not only used in an early design stage or cycle, but guides
the software development throughout a project. SA documentation is frequently
revisited during software enhancement and maintenance [101]. Many practition-

2

1.3. RESEARCH MOTIVATION

ers forget the reasons behind architectural design decisions and do not understand
the design of others without documented design rationale [101].

1.3 Research Motivation

It is recognized by Bass et al. in [9] and Clements et al. in [21] that even a
perfect SA is essentially useless if it is not understood; proper documentation
should have enough detail, no ambiguity, and it must be organized such that
users can quickly find information and answer their questions [77]. In software
industry, it is common practice to capture AK in file-based documents [80] such
as text files and diagrams.

Parnas and Clements argue [78] that documents should be designed and organised
with separation of concerns in mind; each aspect of a system is described in one
section. A file-based document can be separated by concerns using, e.g., a view-
based organisation [9, 21] in which each view describes and aspect of AK for
interested document users. Separation of document content into sections provides
an organisation of AK, and a table of content with section titles can be used as
an index to find the AK in this organisation.

Many relationships exist between AK in SA documentation, e.g., between require-
ments, decisions, and components. Consider a decision recorded in a document.
A developer may need to know how this decision impacts the components and
interfaces s/he is working on. When evaluating the decision an architect is in-
terested in related decisions, requirements, and alternatives. A quality assurance
manager might need to know all quality attributes that the decision impacts.

Explicit documentation of the relationships between AK is also referred to as
’traceability’ between AK. The importance of traceability between AK was rec-
ognized several decades ago [72], however, it is still difficult to achieve traceability
between AK [49, 20]. Industry professionals indicate that the lack of traceability
in SA documentation is a major problem [80].

In the book ’Documenting Software Architectures’ [21], the first rule for sound SA
documentation is that it should be written for its readers. This rule entails that
multiple relationships between AK are described for the readers, since SA cannot
be described in one dimension [21]. The organisation of file-based documents
in a table of content is however linear, and introduces repeated descriptions of
AK when multiple relationships between (or ’dimensions on’) the AK have to be
found in this organisation. The repetition of AK in file-based documents however
conflicts with the second rule for sound documentation in [21], which states that

3

CHAPTER 1. INTRODUCTION

AK should not be repeated, especially considering the difficulties of document
maintenance when SA evolves.

Relationships between AK that are not indexed by the file-based document organ-
isation have to be searched inside document contents within sections. However,
reading or keyword searching in document contents can take much time and is
error-prone due to synonyms, spelling errors, and abbreviations. Moreover, it
is difficult to make document contents unambiguous [77] and organise the AK
therein such that it is successfully communicated to users with different back-
grounds [83].

It is hard to organise interrelated AK using the linear file-based document organ-
isation in such a way that it supports all document users in finding the AK they
need. SA documentation in industry is predominantly file-based and often has
a ’one-size-fits-all’ organisation that does not serve specific users and their tasks
well [80]. SA documentation that is not suitable for its users is not cost-effective
[21, 31].

A document organisation that does not support all AK needs may cause its users
to waste time searching for AK in the wrong locations and retrieve incomplete or
incorrect AK, which in turn leads to delays and mistakes during their software
development activities. The inefficient and ineffective retrieval of AK from SA
documentation is the problem we address in this thesis.

We conjecture that an ontology-based documentation approach can improve the
retrieval of AK from SA documentation, compared to the file-based approach.
"An ontology" refers to a formal domain model in which concepts and relationships
between concepts are described [68]. An ontology can organise AK with classes
and relationships, and provides explicit semantics for readers to recognize AK
and relationships between AK. An ontology-based AK organisation is non-linear,
and may help document users to retrieve the interrelated AK that they need
more quickly and correctly.

There is a growing interest in the use of ontologies for SA documentation, e.g., for
SA document re-use [119] and as a precise and common vocabulary for describing
architectural decisions [4, 60]. Su et al. propose the use of ontology for visualisa-
tion and non-linear navigation of SA documentation to reduce the cognitive load
on its users [95]. López et al [68] and Jansen et al. [51] provide empirical evidence
that the use of ontology-based documentation improves AK extraction and AK
understanding, respectively. We want to investigate if the use of ontology-based
documentation improves the retrieval of AK needed by software professionals,
and we want to explain why AK retrieval is (not) improved.

4

1.4. RESEARCH QUESTIONS

1.4 Research Questions

In this thesis we investigate the use of ontology-based documentation to improve
the efficiency and effectiveness of AK retrieval from documentation. We study AK
retrieval efficiency by measuring the time required to answer questions about AK,
and effectiveness by measuring the correctness and completeness, i.e., precision
and recall, of answers to the questions.

Our main Research Question (RQ) is:

Can we improve AK retrieval efficiency and effectiveness using ontology-
based documentation?

We first need to find out how AK is retrieved in file-based documentation, to
understand how ontology-based documentation may improve AK retrieval. We
study practice and literature to investigate how professionals find file-based AK
descriptions and use AK organisation, and to identify AK retrieval challenges.
Our first RQ is thus:

RQ1 How do software professionals retrieve AK from file-based documentation?

Next, we examine how an ontology can be used for AK retrieval from SA doc-
umentation. We introduce an ontology-based approach for storing, annotating,
and retrieving AK descriptions together with their lay-out, diagrams, and the
meta-data of SA documents. Our second RQ is:

RQ2 How can an ontology be used for retrieving AK from documentation?

Building an ontology for SA documentation requires ontology engineering, and
we investigate how a useful ontology may be built in the context of a software
industry project. Different roles in software development have different needs for
AK, and these needs may be complex and domain specific. Building an ontology
to suit these diverse AK needs is important, since professionals need to retrieve
the AK from documentation, and challenging, because professionals in industry
have limited time and opportunity to provide and clarify their AK needs. Hence,
our third RQ is:

RQ3 How to construct an ontology for SA documentation in a software project
context?

To ascertain that the ontology-based approach improves AK retrieval, we com-
pare it to a file-based approach in software industry practice. We test whether
there is a significant difference in AK retrieval efficiency and effectiveness between
software professionals that answer architecture-related questions from file-based

5

CHAPTER 1. INTRODUCTION

and ontology-based documentation. We want to explain why there is (no) differ-
ence in AK retrieval efficiency and effectiveness and understand how the use of
the approaches influences AK retrieval by analysing the recorded search actions.
This leads to our fourth RQ:

RQ4 How do file-based and ontology-based documentation influence the efficiency
and effectiveness of AK retrieval?

Finally, we want to understand how different ontologies perform in terms of
their relative efficiency and effectiveness, in order to optimize AK retrieval of the
ontology-based approach itself. We test for differences in AK retrieval efficiency
and effectiveness between the use of ontologies built from different understandings
of the AK needs of document users. We analyse the search actions of document
users in order to understand how the use of different ontology-based AK organi-
sations influences AK retrieval. Our fifth RQ is:

RQ5 How do different ontology-based AK organisations influence the efficiency
and effectiveness of AK retrieval?

1.5 Research Approach

The five research questions together provide insights that are used to answer the
main RQ. Figure 1.1 depicts how the RQs relate to each other via the objects
that are studied.

File-based SA documentation is studied in RQ1 to understand how professionals
retrieve its AK. Insights from RQ1 are input for RQ2 to find out how an ontology
can be used to retrieve AK. The AK descriptions in file-based documentation are
imported in ontology-based documentation and both approaches are compared
when investigating RQ4.

Ontologies organise the AK in ontology-based documentation. We constructed
an ontology in a software project context (RQ3). The newly constructed ontol-
ogy and a predefined ontology were used in ontology-based documentation that
was compared with file-based documentation (RQ4). Two other ontologies were
constructed and their use in ontology-based documentation was compared to in-
vestigate the effect of different ontology-based AK organisations on AK retrieval
efficiency and effectiveness (RQ5).

An ontology-based documentation approach was created as a result of RQ2. The
approach was compared to file-based documentation (RQ4) and optimized by
comparing different ontologies (RQ5). RQ4 and RQ5 provide insights for our

6

1.5. RESEARCH APPROACH

ontology-based

documentation

predefined ontology

constructed ontologies

import AK

descriptions

file-based

documentation

used to

organise

used to

organise

RQ 1 – How do software

professionals retrieve AK from

file-based documentation?

RQ2 – How can an ontology

be used for retrieving AK

from documentation?

RQ5 – How do different ontology-based

AK organisations influence the efficiency

and effectiveness of AK retrieval?

RQ3 – How to construct an

ontology for SA documentation

in a software project context?

RQ4 – How do file-based and ontology-based

documentation influence the efficiency and

effectiveness of AK retrieval?

MAIN RQ – Can we improve AK retrieval efficiency

and effectiveness using ontology-based documentation?

Legend

input: Study object or

findings previous RQ

output: findings or

new study object
RQ

Dependency between study objects

Figure 1.1: Relationships between research questions and study objects

main RQ; whether AK retrieval efficiency and effectiveness can be improved using
ontology-based documentation.

We applied several research methods to answer the RQs:

Controlled Experiments are used to test hypotheses about the effect of indepen-
dent (or ’predictor’) variables on dependent (or ’response’) variables. There is
control on the experiment context to limit the effects of variables other than the
chosen independent variables [34]. We tested hypotheses about the effect of us-
ing file-based and ontology-based documentation (independent variables) on the
efficiency and effectiveness (dependent variables) of AK retrieval.

7

CHAPTER 1. INTRODUCTION

A Case study is an empirical investigation for which the control and reductionism
in an experiment is not suitable [34]. Case studies are appropriate to investigate a
"phenomenon in depth within its real-life context, especially when the boundaries
between phenomenon and context are not clearly evident" [120]. We conducted an
exploratory case study [82] to gain insight in the process of building an ontology
in the context of a software project.

Protocol Analysis [35] is the study of verbal reports to identify how people use
their intelligence to solve problems in complex real world environments [19].
Analysis of verbal reports can be used to identify cognitive processes and build
knowledge-based systems [115]. We asked software professionals to voice their
thoughts whilst searching in SA documents and analysed the transcripts.

Grounded Theory (GT) uses empirical generalization to build a domain theory
[40] around a central theme [93]. Patterns that indicate concepts are identified
in collected domain data. The identified concepts are aggregated into categories,
relationships between categories, and their properties, which together form a
domain theory. We used GT to build an ontology (i.e., a domain theory) around
the central theme; "AK that needs to be retrieved from SA documentation".

A Survey is used to collect both objective data (e.g., demographics) and subjective
data (e.g., opinions) from individuals via interviews or questionnaires [55]. The
data collected from a representative sample of a population may be generalized
to identify characteristics of the total population [34].

We conducted Literature review by studying books, publications found via inter-
net search engines, publications found in bibliographies, and publications that
cited the literature we previously studied. This is different from a systematic lit-
erature review, which has the goal of sampling and aggregating evidence in liter-
ature (considered primary studies) and reporting the review results as a complete
(secondary) study [12].

During Prototyping an initial system version with its most essential functions is
built. Prototyping allows exploration of design issues as well as early communi-
cation of the functionality and design principles of a system [113].

The Computer Research Methods (CRM) framework by Holz et al. [50] can be
used to describe a study with four questions:

1. Research objective: what do we want to achieve?

2. Data collection: where does our data come from?

3. Data usage: what do we do with the data?

4. Achievement: was the goal achieved?

8

1.5. RESEARCH APPROACH

We summarize the research conducted for each RQ below using the first three
CRM questions. Our conclusion chapter answers the fourth CRM question. An-
swers to CRM questions1 and the applied research methods are listed in italic
between parentheses. Table 1.1 gives an overview of the aforementioned.

Table 1.1: Overview of research objective, data collection, data usage, and re-
search methods per RQ

Research
questions

Research
objective

Data collec-
tion

Data usage research
methods

RQ1 in Chap-
ter 3 and 2

understand
technology

observe and
measure in
field, read

identify pat-
terns, themes,
and trends

protocol anal-
ysis, literature
review

RQ2 in Chap-
ter 4

create tech-
nology

model and im-
plement

develop tech-
nology

prototyping

RQ3 in Chap-
ter 5

create ap-
proach and
understand

ask and model
in field

develop ap-
proach, iden-
tify trends

case study,
grounded
theory

RQ4 in Chap-
ter 6

compare,
evaluate, and
understand
technology

experiment,
measure, and
ask in field

calculate
numbers,
identify pat-
terns

controlled ex-
periment, sur-
vey

RQ5 in Chap-
ter 7

compare,
evaluate, and
understand
technology

model, exper-
iment, and
measure

calculate
numbers,
identify pat-
terns

controlled ex-
periment

The objective of RQ1 is to understand how software professionals retrieve AK
from file-based documentation (objective: understand technology). We collected
data by recording the actions of software professionals that search for AK in
file-based documentation (data collection: observe and measure in field) and
by reviewing literature (data collection: read, method: literature review). We
used the collected data to investigate the cognitive process of professionals that
search for AK and to identify how AK is typically organised and retrieved in file-
based documentation (data usage: identify patterns, themes, and trends, method:
protocol analysis).

The objective of RQ2 is to create an ontology-based approach for retrieving AK
from SA documentation (objective: create technology). We specified and imple-
mented an ontology-based documentation approach (data collection: model and
implement, data usage: develop technology, method: prototyping).

1We use "understand" and "create" as shorter terms for the research objectives in [50] and
added "develop" to the data usage sources in [50].

9

CHAPTER 1. INTRODUCTION

The objective of RQ3 is to understand how we can construct an ontology for
SA documentation in a software project context (objective: create approach and
understand). We collected data in a cyclic process, by first acquiring typical
questions from software professionals (data collection: ask in field, method: case
study), using the questions to model an ontology (data collection: model in field,
method: grounded theory), and evaluating the ontology with the help of other
professionals (data collection: ask in field). This process was repeated, evaluated,
and specified as an ontology engineering approach (data usage: develop approach
and identify trends).

The objective of RQ4 is to understand how the use of a file-based and ontology-
based documentation approach influences AK retrieval efficiency and effectiveness
(objective: compare, evaluate, and understand technology). We collected data in
an experiment involving software professionals that answered questions about
AK using the two documentation approaches (data collection: experiment and
measure in field, method: controlled experiment), and by conducting a survey
among professionals (data collection ask in field, method: survey). The collected
data was used to test for a significant difference in AK retrieval efficiency and
effectiveness between the approaches. We analysed the search actions of exper-
iment participants to explain how the two approaches influenced AK retrieval
(data usage: calculate numbers, identify patterns).

The objective of RQ5 is to understand how ontology-based AK organisation can
be optimized for efficient and effective AK retrieval (objective: compare, evalu-
ate, and understand technology). We built two ontology-based AK organisations
that were used to answer questions during architectural review (data collection:
model, experiment, and measure, method: controlled experiment). The collected
data was used to test for a significant difference in AK retrieval efficiency and
effectiveness between the two ontology-based AK organisations. We analysed the
search actions of experiment participants to explain how the AK organisations
influenced AK retrieval (data usage: calculate numbers, identify trends).

1.6 Thesis Chapters

• Chapter 2 - Searching Architectural Knowledge in File-based Docu-
mentation

In this chapter we examine how software professionals retrieve AK from file-based
documentation (RQ1). We captured the search actions of software professionals
that use file-based SA documentation in an industry case study and we investi-
gated their cognitive process using protocol analysis. We found that prior knowl-

10

1.6. THESIS CHAPTERS

edge helps professionals to search AK efficiently and effectively. However, it can
also misguide professionals to an incomplete search.

• Chapter 3 - Organising and Retrieving Architectural Knowledge in
File-based Documentation.

In this chapter we review literature to find out how AK is typically retrieved
from file-based documentation (RQ1). We found that file-based documents have
a linear organisation of AK whilst document users do not necessarily retrieve AK
following the same organisation. Users may not easily find AK that not indexed
by the document organisation, however, creating a document organisation that
supports the AK retrieval needs of all users is difficult and introduces redundant
and scattered AK descriptions. AK retrieval challenges reported in literature
stem from limitations of the linear file-based document organisation.

• Chapter 4 - Ontology-based Architecture Documentation Approach

In this chapter we investigate how an ontology can be used for retrieving AK from
SA documentation (RQ2). We first give background information on the use of
ontologies for organising and retrieving AK. We then introduce an ontology-based
documentation approach that consists of a software ontology and semantic wiki.

• Chapter 5 - An Exploratory Study on Ontology Engineering for Ar-
chitecture Documentation

This chapter illustrates how to build an ontology for SA documentation in a
software project (RQ3). Different roles in software development have different
needs for AK, and building an ontology to suit these diverse needs is challenging.
We describe an approach that involves the use of typical questions and grounded
theory for eliciting and constructing an ontology. We outline eight contextual
factors, which influence the successful construction of an ontology, especially in
complex software projects with diverse AK users. We tested our ’typical question’
approach in an industrial case study and report how it can be used for acquiring
and modelling AK needs to construct a useful ontology.

• Chapter 6 - How Organisation of Architecture Documentation Influ-
ences Knowledge Retrieval

In this chapter we report case studies in two companies to investigate how the use
of file-based and ontology-based documentation influences AK retrieval (RQ4).
We tested if there was a difference in AK retrieval efficiency and effectiveness
between software professionals that answered architecture-related questions from
the two documentation approaches in a controlled experiment. We then investi-
gated why there was (no) difference in AK retrieval efficiency and effectiveness
between the approaches by studying the search actions of the software profes-

11

CHAPTER 1. INTRODUCTION

sionals. We found that the use of better AK organisation correlates with the
efficiency and effectiveness of AK retrieval. We also conducted surveys and a
cost-benefit analysis of adopting ontology-based documentation in the studied
projects.

• Chapter 7 - Supporting Architecture Documentation: A Comparison
of Ontologies for Knowledge Retrieval

In this chapter, we investigate how different AK organisations influence the ef-
ficiency and effectiveness of AK retrieval from ontology-based documentation
(RQ5). We executed a controlled experiment to test for differences in AK re-
trieval efficiency and effectiveness between ontologies built from different un-
derstandings of the AK needs of document users. We found that an improved
understanding of AK needs allows for the construction of an ontology from which
document users retrieve AK more efficiently and effectively. In constructing the
ontologies, we applied ontology design criteria suggested by Gruber [42] to im-
prove their general qualities. In some cases we found that the ontology support
for AK needs had to be traded off against ontology design criteria.

• Chapter 8 - Conclusions

In this chapter we summarize and discuss the answers to RQ1 through RQ5, and
how they together provide an answer to themain RQ. We describe contributions
of the work in this thesis as well as their implications and possible future work.

1.7 Publications

Most writings in this thesis are peer-reviewed publications or currently under
review for publication.

Chapter 2 was published as:

• K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet - "The impact of prior
knowledge on searching in software documentation", In ACM Symposium
on Document Engineering (DocEng), pp. 189-198, 2014. [27]

Chapter 3 is a section from an article that is under review for publication as:

• K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet - "How organisation of
architecture documentation affects architectural knowledge retrieval", Sci-
ence of Computer Programming (SCP) - Special Issue on Knowledge-based
Software Engineering, March 2016 - under review. [29].

We refer to this article as "SCP article". The SCP article is an extension of:

12

1.7. PUBLICATIONS

• K. A. de Graaf, A. Tang, P. Liang, and H. van Vliet - "Ontology-based
software architecture documentation", In Joint Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), pages 121-130. IEEE, 2012.
[30]

Chapter 4 is based on the SCP article [29] (under review) except for Section 4.3,
which was published as:

• K. A. de Graaf - "Annotating software documentation in semantic wikis",
In Workshop on Exploiting semantic annotations in information retrieval
(ESAIR), pp. 5-6. ACM, 2011. [25]

Chapter 5 was published as:

• K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, and H. van Vliet
- "An exploratory study on ontology engineering for software architecture
documentation", Computers in Industry, 65(7):1053-1064, 2014. [26]

The writings in chapter 6 are from the SCP article [29] that is under review and
extended from [30].

Chapter 7 will be published as:

• K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet - "Supporting ar-
chitecture documentation: A comparison of two ontologies for knowledge
retrieval", In International Conference on Evaluation and Assessment in
Software Engineering (EASE). ACM, 2015. [28] (see http://dx.doi.org/
10.1145/2745802.2745804)

13

http://dx.doi.org/10.1145/2745802.2745804
http://dx.doi.org/10.1145/2745802.2745804

2
Searching Architectural Knowledge in

File-based Documentation

In this chapter we examine how software professionals retrieve AK in file-based
documentation (RQ1). It is important that AK can be retrieved efficiently and
effectively, to prevent wasted time and errors that negatively affect the quality of
software. We studied the search behaviour of professionals in industry when they
answered questions using SA documents. Prior knowledge helps professionals to
search SA documents efficiently and effectively. However, it can also misguide
professionals to an incomplete search1.

2.1 Introduction

In software industry, it is a common practice to capture information about a
software system, its design, and architecture in file-based documents [80], e.g.,
in text documents and diagram files. It is important that software professionals
can quickly and correctly answer questions from these documents. Otherwise
valuable time is wasted, costly errors could be made, and software may not be
built according to specification, which increases the cost of software projects and
decreases the quality of software.

The organisation of file-based documents by directories, titles, and sections typ-
ically does not support all of the questions asked by software professionals [77].
Spelling errors, abbreviations, and synonyms make keyword searching ineffective
and professionals may not know the right keywords to find answers [65]. Exhaus-

1In this study context we use ’AK retrieval’ and ’AK searching’ interchangeably.

15

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

tive exploration of all document content is time-consuming and impractical in a
large document set.

These issues introduce search uncertainty and make it hard for professionals to
find complete and correct answers within reasonable time. Professionals waste
time searching for answers in unstructured documentation [77]. The obstacles
to finding the right information can be so great that it discourages professionals
from trying to search at all [66, 65].

We studied how 26 software professionals in industry retrieved AK from docu-
mentation to answer architecture-related questions. The software professionals
were asked to think aloud while answering questions about software and archi-
tectural elements such as subsystems, components, behaviour, requirements, and
decisions. We measured how much time was spent on finding answers to the
questions and whether answers were complete and correct.

We found that the search behaviour of software professionals is heavily influenced
by their prior knowledge about the documentation and the software specified in
this documentation. Prior knowledge is used to guide predictions about, e.g.,
the location of knowledge, which keywords can be used to find knowledge, and
whether the knowledge found is correct and complete. Professionals use their
prior knowledge as a short-cut to find answers to their questions, i.e. they use a
heuristic (or ’experience-based’) approach [108, 91] to searching.

Use of prior knowledge helped some of the participants in the study to quickly
find the location of correct answers, even when the document organisation did
not support the questions asked. The participants preferred to use their prior
knowledge instead of exhaustively exploring documentation content.

We however observed that availability and confirmation bias can occur when
using prior knowledge, which results in wasted time and incomplete answers.
Availability bias and confirmation bias are cognitive biases that cause errors in
judgement. Participants made inaccurate predictions about whether documents
contained answers and whether searching for certain keywords would lead to
answers. Moreover, several participants only looked for confirmation of answers
that they said to know from their prior knowledge.

In this chapter we first describe how prior knowledge is used by professionals to
search AK in SA documentation. We then evaluate the use of prior knowledge
in terms of AK retrieval efficiency and effectiveness and report cognitive biases
that lower this efficiency and effectiveness. These findings provide guidance for
software practitioners to make optimal use of their prior knowledge when search-
ing AK in SA documentation.

16

2.2. DESIGN AND ANALYSIS OF SEARCH BEHAVIOUR STUDY

We make the following contributions:

1. Report how professionals use prior knowledge to search in SA documents.

2. Identify cognitive biases that may occur when using prior knowledge to
search in SA documents.

3. Report how prior knowledge and cognitive bias affect the efficiency and
effectiveness of searching.

Section 2.2 details on the study design, identification of the search strategies,
and cognitive process of participants. Section 2.3 reports and evaluates how
prior knowledge is used when applying the search strategies and how cognitive
biases may occur. Lessons learnt for document users and writers are described in
Section 2.4 and Section 2.5 discusses threats to validity. In Section 2.6 we discuss
related work and Section 2.7 reports our conclusions.

2.2 Design and Analysis of Search Behaviour Study

2.2.1 Study Design

We conducted a study to investigate how software professionals search for AK in
SA documents. This study was part of a larger experiment reported in Chap-
ter 6. The study was conducted in a software project at the R&D department
of Océ technologies in the Netherlands. Océ is an international leader in digi-
tal document management and a Canon Group company. Océ applies an agile
development methodology to encourage creativity and productivity.

Participants are all software professionals at Océ R&D who are involved in the
software development process. Océ participants were recruited by circulating a
voluntary sign-up list during a presentation about ArchiMind (advertised using
a mailing list and posters). At the end of each experiment session we asked
participants to recommend interested colleagues. This is a form of snowball
sampling. Table 2.1 gives the demographics of the participants.

The Océ professionals need to retrieve AK specified in the reference architecture
for a product-line of printing machines which also details on the variations and
configuration of specific products. With the help of an Océ professional we es-
timated that in 7 months time at least 49 out of 145 product-line architecture
documents were actively used in multiple projects. The documents used in this
study are a subset of all reference architecture documentation.

17

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

Table 2.1: Demographics of Participants at Océ

Number of Primary Average Average Average
participants role of years in years years working

participants role at Océ in role at Océ
6 Domain architect 3.60 4.77 9.92
5 Software engineer 6.47 6.81 7.47

5 Software project
manager 3.83 5 14

4 Product or
system test engineer 9.75 11.75 11.625

4 Workflow architect 7.25 7.25 18.75
1 Configuration manager 3 10 3
1 Software designer 1 1 1

The documents used in the Océ study are:

• Two Software Architecture Documents (SAD) of 3 and 9 pages. SADs detail
the design of functionality, behaviour, and components. One SAD gives an
overview of the AK in the other SAD.

• Four Software Behaviour Documents (SBD), ranging in size from 8 to 18
pages. SBDs describe the behaviour of software together with all require-
ments and settings for that behaviour.

• One System Reference Document (Sysref) of 19 pages. The Sysref details
on the high level system design, its decomposition in terms of subsystems,
components, and interfaces, and decisions and rationale on the system de-
sign.

• One Design Document containing three UML diagrams that detail on the
design of subsystems, components, and interfaces. The design document is
often more up to date than the Sysref document that partially details on
the same AK.

These documents follow a company-specific format and do not mention usage of
certain architecture description standards, e.g., ISO 42010 [2]. The documents
are stored in 3 directories. A directory ’Sysref’ contains the Sysref and the design
document in UML. A directory ’SBD’ contains SBDs. A directory SAD contains
the overview SAD and one subdirectory with the other SAD.

The documents are written in English, and consist of 79 pages, 3 diagrams,
1,794 paragraphs, 3,183 lines, and 13,962 words. Participants could search the
documents using a file explorer (MS Windows Explorer), document editor (MS

18

2.2. DESIGN AND ANALYSIS OF SEARCH BEHAVIOUR STUDY

Word), and UML editing tool (MagicDraw).

An Océ professional estimated that there are around 50-75 users of these doc-
uments. Three Océ software professionals confirmed that the documents are
representative of their usual practice. Question 6 of a questionnaire among par-
ticipants in Table 6.4 in Section 6.3 also confirms this.

We formulated 7 questions about the knowledge in the documents. Criterion
for selection of these questions include that the interpretation of the questions is
similar between different participants and that their answers can be quantitatively
assessed, i.e., the questions should not be open-ended. Part of the questions have
been obfuscated for non-disclosure reasons: ‘QQ’, ‘XX’, ‘YY’, and ‘ZZ’ replace
an actual software entity or concept.

1A: Which settings have an impact on behaviour “History”?

1B: Which settings have an impact on behaviour “Alert Light”?

2: Which requirements for behaviour “XX” should be satisfied (realized) by
component “Settings Editor”?

3A: Which decisions have been made about component “Settings Editor”?

3B: Which decisions have been made on the configuration of behaviour “YY”,
“ZZ”, “History”, and “XX”?

4A: Which subsystem is interface “QQ” part of?

4B: Which other interfaces are offered by this subsystem?

13 of the 26 participants answered questions 1A, 1B, and 2 and the other 13 par-
ticipants answered questions 3A, 3B, 4A, and 4B. Answering these questions was
part of an experiment reported in more detail in Chapter 6. An ontology-based
documentation approach (introduced in Chapter 4) was used by participants to
answer the remaining questions. For example, the participants that answered
questions 1A, 1B, and 2 using file-based documentation would subsequently an-
swer questions 3A, 3B, 4A, and 4B using ontology-based documentation.

In total 91 answers to the 7 questions were given by 26 participants when using
file-based documentation. The researcher conducting the study read the 7 ques-
tions aloud to the participants. We asked all participants to search until they
were satisfied with the time spent on an answer and its perceived correctness and
completeness. Participants were instructed that this satisfaction should reflect
their normal way of working.

We measured AK retrieval efficiency by recording how much time participants
spent on accomplishing each task, namely, searching and providing an answer to

19

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

a question. Effectiveness was measured by recording the recall of participants,
i.e. the completeness of their answers, and precision, i.e. the correctness of
their answers. A complete answer (resulting in perfect recall) to questions 1A,
1B, 2, and 4B inluded multiple knowledge elements, e.g., two settings, three
requirements, or four interfaces.

The ‘ground truth’ for evaluating recall and precision was verified in a pilot
with two Océ professionals who did not participate in the study. They were
asked whether an answer for a given question was complete and correct. We use
"completeness" to refer to recall and "correctness" to refer to precision in the rest
of the chapter for a better understanding.

The two professionals that participated in the pilot also proposed improvements
to the question set. They evaluated whether each question was representative of
the questions that software professionals at Océ normally ask and whether each
question was relevant to software professionals in different roles. The questions
were also evaluated on their representativeness and relevancy by five participants
in a questionnaire after the experiment reported in Table 6.5 in Section 6.3. They
evaluated all questions as relevant and representative for their jobs except for
question 3A, which one participant evaluated as irrelevant and not representative.

The researcher conducting the study kept track of what participants indicated to
be answers to a question. When a participant stopped searching, said s/he found
an answer, or said s/he was satisfied, the researcher verified with the participant
whether this was the final answer to the question.

We captured the search actions of participants by video recording their monitor
screen. We used the think aloud method [115] and asked participants to think
aloud when searching and recorded their voice in the video recordings.

2.2.2 Identification of Search Strategies and Prior Knowl-
edge

We identified around 2,500 search actions in over 11 hours of video recordings.
Table 2.2 details the different types of search actions that we identified and en-
coded from the videos. We collected the search actions used to find 90 of the
91 answers given by the participants. The video record of one participants an-
swering one question was corrupted beyond repair and is thus excluded from our
analysis.

Not all participants were talkative, so the think aloud recordings for some ques-
tions were more detailed than others. Also, some phrases and parts of sentences
said in video recordings of 22 of the 90 answers could not be heard clearly due

20

2.2. DESIGN AND ANALYSIS OF SEARCH BEHAVIOUR STUDY

Table 2.2: Encoding of search actions from video recordings

Search action Description and criteria for identification
Exploring directories
Open Dir Participant opens directory.
Inspect Dir Participant has contents of directory on screen for

3 seconds or more.
Open Doc Participant opens document.
Dir keyword search Participant searches for keyword in the docu-

ments in a directory.
Inspect Dir search result Participant inspects the list of documents found

by using a keyword search in directory.
Exploring documents
Scan section Participant has content of document section or

diagram on screen for 3-5 seconds.
Detailed scan Participant has content of document section or

diagram on screen for more than 5 seconds.
Scroll to section Participant scrolls to a specific section and does

not inspect intermediate sections.
Scroll to see section title Participant scrolls to see the title of section cur-

rently being read.
View TOC Participant looks at Table of Contents for 3 sec-

onds or more.
Click TOC Participant clicks on an entry in Table of Contents

to navigate to section.
Keyword Search Participant searches for keyword in document.
Inspect context of search result Participant looks at keyword search result and

surrounding text for more than 3 seconds.

to low sound recording volume and low volume of participants’ voices. We how-
ever could often still infer what was said from the context of the search. One
researcher spent 8 weeks to encode the search actions and transcribe think-aloud
recordings from the videos.

From the identified search actions and think aloud verbalization we constructed
Problem Behaviour Graphs (PBG) [73]. The construction of PBGs is a form of
protocol analysis [35] which can be used to identify how people use their intelli-
gence to solve problems in complex real-world environments [19]. In [19], Chen
and Dhar used PBGs to model and investigate the cognitive process of people
engaged in online document-based information retrieval. In our case the problem
space consists of finding answers to questions using the document organisation,
content, and the search functions of the documentation tools.

21

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

A PBG starts with the initial state of knowledge one has about a problem. In
our case the initial state of knowledge was the question asked and the existing
prior knowledge of participants about the documentation, its content, and the
software system and project it specifies.

The initial knowledge state in a PBG changes to other knowledge states as the
problem-solving process progresses. Problem-solving progressed when partici-
pants executed search actions in order to obtain new knowledge about the search
problem. When a solution is found the problem-solving process ends. In our case
the problem-solving ended when a participant answered a question.

Figure 2.1 shows one of the constructed PBGs in which a participant had to find
settings for behaviour ‘Alert Light’ in order to answer question 1B. The time
sequence of search actions is from top to bottom in this PBG. The knowledge
states are represented by boxes with rounded corners, that each contain the
additional knowledge acquired by the participant when searching for knowledge.

We identified four search strategies using PBGs which are detailed below with a
concrete example. We could identify to which search strategy each of the 2,500
encoded search actions belonged. In most cases multiple search strategies were
used when answering a question.

In the PBG example shown in Figure 2.1 the first search strategy used by the
participant is to explore the document organisation in directory SBD. The
documentation was organized by means of directories, documents, and sections.
Part of the information in the contents of document sections was organised by
lay-out and text notations, e.g., in the phrase “REQ_1: users can save login cre-
dentials in Comp_3: UI ” which makes a requirement explicit. Information was
organized in diagrams by means of UML notations that, e.g., denoted interfaces
and interactions.

Figure 2.1 shows that using this strategy the participant finds document SBD-
_Alert_Light by inspecting the content of directory SBD. The title of SBD-
_Alert_Light relates to behaviour ‘Alert Light’ in question 1B, which indicates
that this document contains information relevant for answering question 1B. The
participant then opens SBD_Alert_Light and checks if it contains a reference to
a dedicated settings document. In the next two search actions the participants
scans for requirements and product information related to behaviour ‘Alert Light’
and one setting is found.

Exploring document organization is a search strategy that was used when search-
ing for 88% of the answers in the study. Participants that spent time on exploring
this document organisation would often quickly gather relevant clues about which
locations contained answers to questions.

22

2.2. DESIGN AND ANALYSIS OF SEARCH BEHAVIOUR STUDY

“Settings for behaviour alert

light”

Initial state

1 behaviour document

SBD_alert_light

Explore

document

organisation

Problem Behaviour Graph Think Aloud Protocol

OpenDoc

Referenced documents

from SBD_alert_light

Scroll to section

“It does not refer to the

settings document”
Detailed scan

“There is a setting here about

how to set the warning time.”

Open Doc

Requirements for behaviour

alert light and one answer

found = setting ‘warning time’

Identified
Strategy

“So I know about one

setting... there is no

reference to the settings

document”

1 settings document –

SBD_print_settings

Triangulate

answer

Product details for behaviour

‘Alert Light’

Detailed scan

“Has no settings if I recall

correctly”

No settings found using

keyword “alert light” in

SBD_print_settings.
Keyword

searching
“”Maybe warning time.. Ah

yes, I knew that behaviour

alert light is refered to by a

different name in these

setting”

Two answers found using

keyword ‘warning' = “warning

in advance” & “warning time”

in SBD_print_settings

Doc Keyword

Doc Keyword

Inspect Dir
4 documents in dir ‘SBD’

“I will start with behaviour

alert light...”

...

Legend: =Operator element =Knowledge state

=Verbalization in think aloud protocol

Search
actions

Detailed scan

Figure 2.1: Problem Behaviour Graph of participant answering question 1B
(Which settings have an impact on behaviour “Alert Light”?).

The organisation of documents does not always fully relate to the questions that
document users have to answer. For example, none of the directory and document
titles used in the study revealed where the decisions for question 3A and 3B
could be found. Section titles inside two documents did explicitly relate to these

23

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

decisions, and the documents had to be opened to discover this. Participants
could exhaustively explore the document organisation to discover documents and
sections that related to a question, however, this took a lot of time for several
participants.

Alternatively, participants would directly search the expected locations of
answers by predicting in which location (directories, documents, and sections)
they would most likely find answers to a question. Participants that used this al-
ternative strategy directly navigated to certain locations at the start of a question,
without exploring the available document organisation beforehand2. Searching
the expected location of answers is a search strategy that was used when searching
for 29% of the answers.

The third and fifth sentences in the think aloud protocol in Figure 2.1 show that
the participant thinks aloud about another document. After finding an answer in
document SBD_Alert_Light the participant decides to open the other document
SBD_ Print_Settings so s/he can verify the correctness and completeness of the
answers. We named this strategy ’triangulate answer’, as multiple sources are
used to verify and improve the answer. This strategy was used by participants
when searching for 11% of the answers.

The participant subsequently uses a strategy of keyword searching for the
name of behaviour ‘Alert Light’. After an unsuccessful keyword search, the par-
ticipant recalls from prior knowledge that the settings may not be mentioned by
the exact name of behaviour ‘Alert Light’, and starts to use a different keyword.

The file explorer, document editor, and UML tool used in the study provide
keyword search functions that show their users which document titles, text frag-
ments, and UML elements match a given keyword. We identified keyword
searching as a strategy that participants used when searching for 62% of the
answers.

2We observed from the search actions and think aloud statements that participants required
3 seconds or more to recognize and explore the document organisation when it was shown
on their screen. After 3 seconds or more the participants acted upon the information by
exploring the document organisation and they talked about this information, e.g. "I see a
settings document in this directory". The participants did not actively explore the available
document organisation if it was shown on their screen for less than 3 seconds. Instead the
participants directly navigated to directories, documents, and sections in which they expected
to find answers.

24

2.3. USING PRIOR KNOWLEDGE TO SEARCH UNDER
UNCERTAINTY

2.3 Using Prior Knowledge to Search under Un-
certainty

In the think aloud recordings the participants voiced that they were uncertain
about the correctness and completeness of 34 answers, out of the 90 answers (38%)
given in the study. 13 of these 34 answers were actually correct and complete.
Participants also voiced for 11 of the 34 answers that in everyday practice they
would verify the answer with a colleague.

Typical remarks about this uncertainty are: "It is difficult to know whether you
found everything in the documentation. [I am] 70% sure of [my] answer", "Be-
cause searching was difficult I am not sure if this is [the] correct [answer].", "I
think there is a 50% chance that I have found all answers", and "I have reasonable
confidence that I have not missed [any parts of the answer]".

We observed how participants used their prior knowledge to deal with their un-
certainty. Prior knowledge was used to predict which documents might contain
answers when the document organisation did not relate to the question. Partici-
pants were able to recall from prior knowledge what different spelling variations,
synonyms, and acronyms existed for technical terms required in the search, and
this enabled them to quickly find answers by keyword searching. Participants
also used prior knowledge to recognize answers and to predict whether an answer
was correct and complete.

Participants talked about how to use their prior knowledge when applying the
search strategies identified in Section 2.2.2. For example, they voiced which
documents might be relevant ("I think only Sysref contains answers"), which
keywords to search for ("I know that Alert Light is referred to by a different
name", also see Figure 2.1), and which answers were complete ("This setting is the
answer. I already knew this setting."). Participants acquired this prior knowledge
by, e.g., having used the documentation, working on the software system, and by
attending meetings, presentations, and conversations with other professionals.

In the next subsection we first describe how participants acquire prior knowledge
in the study. In subsections 2.3.2 to 2.3.6 we report the different ways in which
participants used their prior knowledge to search for answers. We also report
cognitive biases that may occur during the use of prior knowledge.

We describe the gain when use of prior knowledge leads to complete and correct
answers and the loss when it does not lead to answers. The gain is categorized
as ’small’ or ’large’ in terms of time saved (compared to the average time spent
on a question) and whether the use of prior knowledge helped participants to
find complete and correct answers. The loss is similarly categorized as ’small’ or

25

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

Table 2.3: Overview of prior knowledge, evaluation, and cognitive biases identified
in study

Prior knowledge Gain if
correct

Loss if
incorrect

Cognitive bias and pos-
sible underlying reasons

Answer is in location X large small No bias identified.
Answer is not in location X small large Availability bias: difficult to

recall examples of answers
found in unfamiliar location
X.

Keyword X leads to answer large large Availability bias: keywords
that are often used for
searching are familiar and
more easily remembered.

Answer can be triangulated large small No bias identified.
Answer is already known small large Confirmation bias: focus on

confirming known answer.

’large’. If a large gain means that participants found many answers in little time,
then a comparatively large loss is that many answers were missed and much time
was wasted.

We have summarized the findings in Table 2.3. The first column denotes what
prior knowledge a searcher may have and the last column denotes what cognitive
bias may occur when using this prior knowledge. Column ’Gain if correct’ denotes
whether a small or large gain was observed when the prior knowledge was correct
and led to answers. Column ’Loss if incorrect’ similarly denotes the loss when
the prior knowledge was incorrect and did not lead to answers

2.3.1 Acquiring Prior Knowledge

Several participants voiced that they learn about how knowledge is organised in
the documentation when searching. For example, one participant voiced: "From
the previous question I have gained knowledge about behaviour History" and "I
already have seen that this knowledge is described in SBDs and not in SADs. So I
already have an approach that works for [searching] requirements". A participant
explicitly voiced that this learning process was intentional: "I would need to build
up a kind of model in this environment, in documentation, to find an approach for
searching. I need to open a few documents in order to come to that approach.".

We could observe that participants most often acquired knowledge about docu-
mentation by exploring the document organisation (one of the search strategies).

26

2.3. USING PRIOR KNOWLEDGE TO SEARCH UNDER
UNCERTAINTY

Participants visited or ignored locations based on what they had learned from ex-
ploring the document organisation during preceding questions. Participants also
used keywords that were successful in earlier searches and used keyword spelling
variations they found when exploring document organisation.

2.3.2 Predicting Which Locations Contain Answers

Several participants voiced in which locations they expected to find answers. For
example, four participants voiced in which locations they expected an answer to
the first question 1A before they started to search: "I will first look in SBD", "I
will look in SBD_history, it has standards settings", "Behaviour is in SBDs", and
"Then I would look in the requirements.".

After these statements the participants directly navigated to directories, docu-
ments, and sections instead of exploring the available document organisation.
They acted on their prior knowledge about the documentation. One participant
explicitly voiced this: "From my knowledge I know I should look in SBD_history
and SBD_print_settings. I would not expect something in SBD_docbox . . . I
however do not claim that this is indeed the case". Such experience provides a
starting point for the search.

The participants intuitively predicted from prior knowledge that certain loca-
tions contained relevant information or an answer because they found (similar)
information or answers there before. This is an availability heuristic, described
by Tversky and Kahneman in [108], which people use to estimate the probabil-
ity or frequency of an event by recalling occurrences of similar events from their
memory.

Correctly predicting that a location contains an answer resulted in a large gain.
Namely, participants that directly navigated to locations found 19 answers to
questions in the expected location and spent, on average, 37% less time compared
to the average time spent on searching these answers.

Incorrectly predicting that a location contained an answer resulted in a small
loss compared to the gain above. Namely, one participant wasted 70 seconds
searching for an answer that was not in the expected location. The participant
however still spent less time than average to answer this question. After the
unsuccessful search in the expected location, the participant used other search
strategies (explore document organization and keyword searching) and then found
the answer. He used an agile search approach by switching to a different search
strategy after the initial search strategy did not work.

27

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

2.3.3 Predicting Which Locations do not Contain Answers

Prior knowledge was also used to predict that an answer could not be found
in certain locations, namely, in specific directories and documents. Participants
ignored locations, i.e., they did not search in locations where it was unlikely to
find an answer. This helped to cut down the search space and thereby save time.
However, participants also gave incomplete and incorrect answers to questions
because they ignored certain locations.

One of the participants said that a document containing answers to questions
1A and 1B was not related to these questions. During question 1B he voiced:
"SBD_print_settings has nothing to do with [behaviour] ‘alert light’. This I
know.". Three participants ignored locations with answers and gave no explicit
reason as to why they ignored the locations. Another participant said that he
decided to not open the Sysref document because he was not very familiar with
it: "I cannot do much with the Sysref . . . I do not really know the Sysref that
well".

In [108] Tversky and Kahneman describe how estimating the occurrence of an
event is affected by the ease with which one can bring instances of this event to
mind from personal experience. Events that are familiar to a person are more
easily retrieved from memory than less familiar events, and this biases the use
of availability heuristics. The participant that explicitly voiced that he was not
familiar with a location had difficulty in recalling examples of answers in this
location. The participant chose to visit locations he was more familiar with and
not the location that he was less familiar with. This suggests that the participant
missed answers because of availability bias.

Correctly predicting that a location can be ignored, i.e. ignoring a location that
indeed does not contain answers, resulted in a small gain, namely, time was saved
by not having to inspect this location.

Incorrectly predicting that a location can be ignored however resulted in a large
loss compared to the gain above. Namely, participants did not find complete
answers to 7 questions because they ignored the location containing the answer.
Moreover, they wasted time searching for answers in other locations that they did
not ignore. When these participants did not find answers they did not reconsider
and check the locations they ignored. We asked all participants in the study to
search until they were satisfied with the time spent and answer found. In this
case the participants decided to stop searching without finding an answer within
reasonable time.

28

2.3. USING PRIOR KNOWLEDGE TO SEARCH UNDER
UNCERTAINTY

2.3.4 Predicting Which Keywords Lead to Answers

The names of certain knowledge elements, e.g. decisions, settings, and sub-
systems, can be recorded using different spelling variations and acronyms. For
example, the component in questions 2 and 3A has three spelling variations in
the documents; ‘settings editor ’, ‘settingseditor ’, and ‘setting editor ’, and one
acronym; ‘SE ’. Keyword searching for only one of these spelling variations does
not return all locations that mention this component.

A participant voiced this problem quite clearly after keyword searching for re-
quirements realized by component settings editor (question 2): "I am not sure
if [my answer] is complete. There could be requirements that do not contain the
name ‘settings editor’. Or [the name] is recorded differently". Another partic-
ipant voiced concerns about how to spell the interface fo question 4A: "IJ-I. I
wonder if there are different ways of writing it". One participant emphasized the
importance of prior knowledge in this situation: "So context, about how we call
certain things within Océ, is really needed to search fast".

Moreover, certain keywords only led to part of the answers, because these key-
words were not recorded in all descriptions of these answers. This was often the
case for keywords that indicated a type of knowledge. For example, only part
of the decisions could be found using keyword ’decision’ because several descrip-
tions of decisions did not contain the actual word ’decision’. People used prior
knowledge to predict the ’coverage’ or ’frequency’ of keywords.

We observed that 8 of the 26 participants used part of a name in their keyword
search, which allows multiple spelling variations to be covered in one keyword. For
example, they used keyword ‘editor ’ to search for component ‘settings editor ’ in
question 2 and 3A. One participant voiced this use of partial keywords for question
2: "Maybe I can search for something like ‘setting’ or ‘editor’". Participants that
used partial keywords however found much knowledge that was irrelevant for
their question, and this resulted in lower average efficiency than the use of full
names when keyword searching.

The participants had a clear preference for using certain keywords over others.
They used keyword searching when trying to find 56 of the 90 answers, yet in
only 7 cases they searched for all the keywords phrased in the question they tried
to answer. Participants voiced that they are familiar using certain keywords: “I
do not know how this is always written in the text so I always search for settings
editor concatenated and settings editor with a space in between” and “Normally
I would have to search for keyword ‘decision’”. One participant used keyword
’requirement’ to answer questions 1B and 2 because he had successfully used the
keyword during preceding question 1A: “I already have an approach that works

29

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

for [searching] requirements”.

Several participants in our study voiced that they used certain keywords because
they were familiar with using these. They recalled from experience that these
keywords could be used to find answers, however, these keywords did not always
lead to answers in this study. This selection of keywords based on familiarity
suggests an availability bias.

Accurately searching for keywords, i.e. using keywords that lead to descriptions
of answers, resulted in a large gain. Namely participants found 34 answers to
questions by keyword searching even though they spent 17.7% more time than
the average for these questions.

Keyword searching allowed participants to find answers without having to spend
a lot of time on exhaustively exploring document content. Several participant
voiced this as their motivation: “I find a lot of text here so I will switch to key-
word searching”, “It is a relatively huge document so what I will do is a keyword
search”, and “I have no other option than to use keyword searching”.

Inaccurately searching for keywords, i.e., using keywords that do not lead to
descriptions of answers, resulted in a large loss compared to the gain above. Par-
ticipants could not find 22 answers to questions via keyword searching and spent
8% more time on these questions than the average time required for these ques-
tions. These participants also used other search strategies, however, they gave up
searching without finding a complete answer to 15 of these 22 questions. They
gave up partially because relatively much time was spent on keyword searching
without finding an answer.

2.3.5 Predicting Whether Answers can be Found in Mul-
tiple Locations (Triangulation)

After finding an answer in some location, several participants tried to verify
whether the answer was complete and correct by searching in other locations.
This strategy is called triangulation, which we describe in Section 2.2.2. This
strategy is applied when, after a participant finds an answer in one location, s/he
navigates to other locations to verify and improve the answer.

Participants predicted from prior knowledge whether they could find the same -
possibly more complete - answer in another location. For example, one partici-
pant first found an answer to question 4B by searching in document Sysref and
then voiced "there should be a diagram here somewhere". The participant then
visited the UML document to find a more complete answer.

30

2.3. USING PRIOR KNOWLEDGE TO SEARCH UNDER
UNCERTAINTY

The answers for questions 1A, 1B, 4A, and 4B were described in multiple lo-
cations. For example, participants looking for settings whilst answering ques-
tion 1B often could not find all the settings in SBD_Alert_Light. Settings
were not very explicit in this SBD and the section titles did not clearly show
where an answer could be found. Participants who also looked for an answer in
SBD_Print_Settings would however find the settings more explicitly recorded.

Accurately triangulating answers, i.e. an answer is improved by searching for the
same answer in another location, resulted in a large gain. Participants improved
the completeness and correctness of 3 answers by triangulating the answers, even
though they spent 95% more time on average (one participant spent 420% of
the average time finding 1 of the 3 answers). 16 out of the 90 answers (18%)
in this study could have been more complete and correct if the participants had
triangulated their answers.

Inaccurately triangulating answers, i.e. searching for the answers in another
location but not finding relevant information to improve the answers, resulted
in a small loss compared to the gain above. Six participants triangulated one of
their answers in another location but did not improve the answer. They spent
on average 23.6% more time than other participants that answered the same
questions.

2.3.6 EstimatingWhether an Answer is Complete and Cor-
rect

Most participants had extensive experience using the documents and building the
software specified in it. Several of these participants had a good idea what would
be the likely answers to the questions. When participants said that they knew
an answer from prior knowledge, we instructed them to nevertheless answer the
question using the documentation.

Participants used their prior knowledge about possible answers to recognize an-
swers while searching and to estimate the completeness and correctness of the
answers they found. This often worked well, however, in some cases the prior
knowledge about possible answers was incomplete. We found that 5 out of the
26 participants made a false assumption because of this.

These 5 participants falsely assumed that an answer they knew from prior knowl-
edge was complete and correct, whilst in reality their answer was incomplete. Two
of these five participants gave an answer that was both incomplete and incorrect.

For example, one participant voiced: "I think my answer is right and I am thus
satisfied. I however already knew this was the answer". Another participant who

31

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

had to find two settings for question 1B voiced: "this is indeed the only setting".
All these participants had the missing parts of their answer on screen for some
time but ignored this.

The search behaviour of these 5 participants was affected by confirmation bias
[74]. The participants searched for answers that they knew from prior knowledge
and confirmed that these answers were recorded in documentation, i.e., they
confirmed their prior beliefs. In the process they ignored other answers and
information that was inconsistent with these beliefs.

Accurately estimating whether an answer is complete and correct based on prior
knowledge resulted in a small gain. 10 participants gave a correct and complete
answer that they claimed to already know from prior knowledge. These partici-
pants spent, on average, 3% less time to find this answer than other participants.

Inaccurately estimating that an answer is complete and correct based on prior
knowledge or prior belief, resulted in a large loss compared to the gain above.
Five answers to questions that were assumed to be correct and complete by 5
participants were in fact incomplete and incorrect. The participants answered
the five questions in 74% of the average time that other participants spent on
these questions. This was because they searched briefly or they stopped searching
immediately after finding an answer known from prior knowledge.

2.4 Lessons Learnt

2.4.1 Lessons for Documentation Users

Prior knowledge can be used to quickly find correct answers to questions when
the document organisation does not support the questions. We found that the use
of certain types of prior knowledge yields larger gains than the use of other prior
knowledge. Moreover, there is a difference in losses when incorrect predictions
are made based on prior knowledge.

Table 2.3 shows that it was rewarding for participants to visit the expected lo-
cation of an answer and to triangulate an answer in multiple locations known
from prior knowledge. If this prior knowledge proves to be incorrect the loss is
small, and it is therefore relatively safe to use. Using prior knowledge to predict
which keywords lead to an answer often yields a large gain, however, incorrect
predictions may result in a large loss and this prior knowledge should thus be
used with caution. Ignoring certain locations or estimating that an answer is

32

2.4. LESSONS LEARNT

complete and correct from prior knowledge yields a small gain and such cognitive
biases increase the chance of a large loss.

Being more aware of cognitive biases can prevent the aforementioned losses. It
may be hard to remember examples of answers being recorded in a certain location
because one is not familiar with this location, however, this does not imply that
the location indeed contains no answers. Certain keywords are easily remembered
because they are often used and familiar. Using these keywords in searching may
however be counter-productive. Prior knowledge about the answer to a question
may be incorrect, incomplete, or outdated.

Existing prior knowledge can be evaluated and updated, by thoroughly explor-
ing document organisation and content, i.e., conducting empirical investigation
and seeking disconfirmatory evidence [91]. This prevents inaccurate predictions
and cognitive biases later on. An additional benefit of exploring the document
organisation and content is that it can remove search uncertainty and the need
for using prior knowledge. A searcher may find document organisation that is
fitting for the question asked, and this organisation often leads to complete and
correct answers.

2.4.2 Lessons for Documentation Writers

We observed several causes for search uncertainty:

• Document organisation does not relate to a question because document
writers do not plan the document organisation to answer all questions that
could arise.

• Documents that are not searched might contain answers.

• The same knowledge might be referred to by multiple spelling variations
and acronyms.

• The type of knowledge might not be consistently recorded.

• Complementary knowledge might be described in multiple locations.

Consequently, a searcher might only become certain that an answer is correct and
complete when all text in the available documentation is read. We observed that
none of the participants exhaustively inspected all available document contents.
Participants either quickly found answers using document organisation that was
fitting for the questions, or they used their prior knowledge to predict which
locations and keywords were relevant when searching.

33

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

Searchers make predictions from their prior knowledge to deal with search uncer-
tainty. These predictions can however be inaccurate and are prone to cognitive
biases. This results in inefficient and ineffective use of documentation, and in
turn lowers the incentive to spend resources on producing good documentation,
creating a vicious cycle [77]. Moreover, incomplete and incorrect answers are
used to build software and may result in costly errors.

Addressing causes for search uncertainty removes the need for searchers to use
prior knowledge and lowers the chance that cognitive biases occur. Creating
a document organisation that fully relates to commonly asked questions re-
moves much search uncertainty. Introducing spelling conventions and consis-
tently recording what type of knowledge is described makes keyword searching
more efficient and less error-prone. Recording the same type of knowledge in one
location prevents scattered descriptions of the same knowledge that can become
inconsistent over time, and in turn removes the need for searchers to triangulate
answers.

These solutions are difficult to realize when writing and maintaining documen-
tation in a linear file-based format with multiple authors. As an alternative,
ontology-based documentation may address above issues, whilst it also provides
benefits from the use of explicit semantics and non-linear organization of knowl-
edge. We explore this alternative in the remainder of this thesis.

2.5 Threats to Validity

The participants also used ontology-based documentation to answer questions as
part of the experiment reported in Chapter 6. We did not find evidence that
the use of the ontology-based documentation approach had an influence on how
participants used the reported search strategies and their prior knowledge in
file-based documentation.

To verify the consistency of the used encoding scheme, described in Section 2.2.2,
two researchers independently applied the scheme to identify search actions from
the videos. After applying the scheme they checked if they came up with the
same set of search actions.

We constructed PBGs using the format depicted in [19] and Figure 2.1. We
observed that participants acquired new knowledge with each executed search
action. For example, one participant voiced: “I have already seen that this knowl-
edge is described in SBDs and not in SADs.”. As such the participants did not
return to a previous state of knowledge, which is proposed as a PBG modelling
construct by Newell and Simon in [73] but not applied in our study.

34

2.6. RELATED WORK

The use of SADs, SBDs, Sysref, and design documents, and the search functions
of the tools used for searching these documents, can be considered generic docu-
mentation practice in industry. This suggest that the identified search strategies
are also generalizable to other software projects.

The evaluation in terms of efficiency and effectiveness in this chapter is specific
to the questions and Océ documentation used in this study. The use of prior
knowledge and cognitive biases that may occur are however largely independent of
the question asked and documentation searched. The use of prior knowledge and
impact of cognitive biases also apply when searching in software documentation
in other domains and is therefore generalizable.

2.6 Related Work

How knowledge is used in software documentation is systematically reviewed in
[33], and in this section we only discuss related work on using prior knowledge to
search software documentation.

Chen and Dhar describe in [19] how prior knowledge is used during online docu-
ment-based information retrieval and how prior knowledge affects the selection of
search strategies. In [86] Shute and Smith identify the use of prior knowledge as
’subject-dependent expertise’ for searching bibliographic databases. For example,
the ’known-item-instantiation’ strategy described in [19] uses subject-dependent
expertise. Shute and Smith describe how participants talk about using their
intuition and “gut feeling”, which suggests that they use their prior knowledge.

In [24] de Boer and van Vliet describe how software professionals in the same
team have similar mental models of documentation. They have a shared under-
standing of the contents of these documents. Moreover, the development process
affects the level of shared understanding within a team. Such mental models of
documentation are part of the prior knowledge that we discuss in this chapter.

In [65] LaToza et al. describe how developers rely on implicit code knowledge
and spend much effort to maintain a mental model of code. Developers recall
details, e.g., about the architecture and design of their code, as part of their
prior knowledge, i.e., they know code details by heart. Moreover, they often
do not consult documentation to check if their mental model is consistent with
documentation.

In [100] Tang describes how software design is affected by cognitive biases. De-
signers use prior beliefs and intuition to make judgements, and cognitive biases

35

CHAPTER 2. SEARCHING ARCHITECTURAL KNOWLEDGE IN
FILE-BASED DOCUMENTATION

may occur because of this. In [17] Calikli et al. investigate how confirmation
biases during software testing can be prevented.

In [91] Stacy and Macmillian describe how software professionals develop and
use their mental models during software engineering activities and how this is
influenced by cognitive biases. For example, code features that are easily remem-
bered by software professionals may be judged to occur more frequently than
other features due to availability bias. They suggest that keywords that are very
long, occur in recently read documents, or occur in code recently worked on may
be more easily remembered than other keywords, and this may cause availability
bias. Similarly, we observed that software professional tend to search keywords
that are familiar and easily remembered from prior knowledge, and that this may
result in availability bias.

In [58] Korkala and Maurer identify communication waste, e.g., outdated and
scattered information, in a software project. The software documentation in our
study is used to communicate knowledge. As such, the losses during the use of
prior knowledge, described in sections 2.3.2 through 2.3.6, can be regarded as
communication waste. The identified causes for search uncertainty can in turn
be regarded as causes for communication waste.

In [96] Su et al. used Information Foraging theory to explain how software pro-
fessionals search for architectural knowledge in document sections using several
foraging styles. Information Foraging theory tries to explain the search behaviour
of people in terms of cost and reward when navigating an information topology.
The study in [96] however does not evaluate whether the observed search be-
haviour is time-efficient and does not focus on use of prior knowledge.

In [56] Ko et al. report an exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks. Their analysis of
information seeking behaviour of software developers relates to our work in which
software professionals also exhibit information seeking behaviour. However, soft-
ware maintenance information is searched in source files and on the Internet,
whereas in our work software professionals search for AK in SA documents.

2.7 Conclusions

File-based SA documents are used to capture and communicate AK in software
projects. It is important that this AK can be retrieved efficiently and effectively,
to prevent wasted time and errors that negatively affect the quality of software.
The organisation of SA documentation typically does not support all of the ques-
tions asked by software professionals. This introduces search uncertainty and

36

2.7. CONCLUSIONS

makes it hard for software professionals to find complete and correct answers
within reasonable time.

We conducted an industry study to investigate how software professionals search
for AK in SA documentation. We found that professionals use their prior knowl-
edge to find answers when the document organisation did not relate to the ques-
tions they had to answer. Prior knowledge was used to make predictions about
the location of AK, which keywords can be used to search relevant AK, and
whether the AK found is correct and complete.

Using prior knowledge is often time-effective, however, inaccurate predictions and
cognitive biases can lead to inefficient and ineffective AK retrieval. Availability
bias may cause searchers to ignore locations and keywords that they are not famil-
iar with, even though these locations and keywords may lead to answers. Using
prior knowledge is also prone to confirmation bias when searchers mainly focus
on confirming the answers that they already know from their prior knowledge.

Awareness of these cognitive biases may reduce the likelihood that they occur
when searching for AK in SA documentation. Searchers can evaluate and update
their existing prior knowledge by spending time on exploring the document organ-
isation and content, which further reduces the probability that cognitive biases
occur. Addressing causes for search uncertainty when writing SA documentation
removes the need for searchers to use prior knowledge and in turn prevents that
cognitive biases occur.

37

3
Organising and Retrieving Architectural
Knowledge in File-based Documentation

In this chapter we review literature to find out how AK is typically retrieved
from file-based documentation (RQ1). We found that file-based documents have a
linear organisation of AK whilst document users do not necessarily retrieve AK
following the same organisation. Users may not easily find AK that is outside the
document organisation, however, creating a document organisation that supports
the AK retrieval needs of all users is difficult and introduces redundant and scat-
tered AK descriptions. AK retrieval challenges reported in literature stem from
limitations of the linear file-based document organisation.

The previous chapter showed that industry professionals experience AK retrieval
challenges when the document organisation does not support their questions. In
Section 3.1 of this chapter we study literature to find out how SA documents are
typically organised, why they do not support the questions of all AK users, and
to identify AK retrieval challenges reported in literature. We shortly discuss in
Section 3.2 to which extent hypertext documentation can alleviate the identified
AK retrieval challenges. The next chapter details how the challenges may be
alleviated by ontology-based documentation.

3.1 File-Based Documentation and its Issues

In their highly influential paper on multi-dimensional software decomposition
[105], Tarr et al. describe how traditional formalisms in software engineering can
only provide a single “dominant” dimension when achieving separation of con-
cerns. Use of a single dominant dimension, by software decomposition based on

39

CHAPTER 3. ORGANISING AND RETRIEVING ARCHITECTURAL
KNOWLEDGE IN FILE-BASED DOCUMENTATION

e.g., quality, functions, development tasks, or data objects, causes problems with
reuse, traceability, comprehension, evolution, and maintenance. These problems
not only apply to the software itself, but also to its documentation.

Parnas and Clements argue [78] that documents should be designed and struc-
tured with separation of concerns in mind; each aspect of a system is described
in one section. File-based documentation can achieve this separation by using,
for example, a view-based structure [9, 21, 2].

Each view provides a ‘cross-section’ of AK. Views are useful to stakeholders who
are interested in different cross-sections of AK. Cross-referencing of AK between
views can help to make interrelated AK traceable and retrievable.

The separation of concerns achieved through a particular set of architecture views
makes the retrieval of certain knowledge – knowledge contained in one view –
relatively easy, but at the same time it makes the retrieval of knowledge scattered
across views difficult. This is a wicked problem: choosing a different set of
views does not solve the issue, but simply moves it elsewhere. This problem is
recognized by Rozanski and Woods in [81], where the notion of perspectives is
introduced next to that of views. Perspectives serve to organise specific types of
knowledge across views.

As the number of different stakeholders and their unique needs for AK increase
in large and complex projects, there is also an increase in misalignment between
the AK needed by stakeholders and how they may retrieve this AK from file-
based documentation. In practice, most stakeholder concerns are addressed by
a small documentation subset that is different for each concern [57]. Moreover,
existing approaches for documenting decisions only frame part of the stakehold-
ers concerns related to decisions [112]. Extensive use of cross-references between
scattered AK or (alternatively) redundant recording of AK in file-based docu-
ments makes AK retrieval and maintenance impractical and error-prone.

The questions about AK that documentation users may ask based on their con-
cerns are illustrated in the right-hand side of Figure 3.1. The questions are about
certain types of AK, e.g., decisions and requirements, and relationships between
AK, e.g., ’impacts’ and ’realized by’. Relationships between AK show how an ar-
chitectural element is connected to or associated with the rest of the architectural
design. For example, a developer may want to find all requirements realized by a
component s/he has to build, whilst an architect may want to find all decisions
that impact the same component during impact analysis.

The left-hand side of Figure 3.1 illustrates how a linear organisation of AK in a
table of contents supports file-based document users in finding a limited set of
relationships between AK. As a result, only one out of three questions asked by

40

3.1. FILE-BASED DOCUMENTATION AND ITS ISSUES

Table of Contents

1. Functional requirements

1.1.1 Subsystem FrontEnd

3.5.2 Component GUI

1.1.1.5 Decision D5

1.1 Requirement 1 -Login

2. Performance

2.5 Decisions

3. Architecture design

3.5 Subsystem FrontEnd

3.8 Maintenance

3.8.3 decision

Yes

match?

"I need to find all

requirements that are

realized by

component GUI"

No

"I need to find all

alternatives and

decisions that are

related to decision D5"

"I need to find all

decisions that impact

performance"

supported AK

relationship

required AK

relationship

questions of

document users

document

organisation

[...]

[...]

quality
decisions

attribute
quality

decisions
attribute

decisionssubsystem

subsystemRequirement

subsystem component

quality
decisions

attribute

decisions

decisions

design

alternatives

(related)

decisions

component requirements

No

Figure 3.1: Mismatch between supported and required AK relationships in file-
based document organisation

the document users is supported in this AK organisation.

For instance, the organisation does not detail where every type of AK can be
found, e.g., design alternatives. Moreover, the relationship between components
and requirements, necessary to answer the question about component GUI, is
missing in this organisation. Extending the AK organisation to support this
question would introduce redundant and scattered descriptions of either require-
ments or components.

Indexing additional relationships (or ’cross-sections’) between AK in a file-based
document organisation introduces redundant and scattered AK descriptions. Re-
lationships between AK that are not indexed by the document organisation have
to be searched inside document contents. It is however difficult to make document
content unambiguous [77] and organise the AK therein such that it is successfully
communicated to users with different backgrounds [83].

Explicitly describing relationships between AK makes the AK traceable. Empir-
ical evidence is given by Shahin et al. in [85] and Javed and Zdun in [53] that
improved traceability leads to better architectural understanding. Lack of trace-
ability in SA documentation is considered a major problem in industry practice
[80].

41

CHAPTER 3. ORGANISING AND RETRIEVING ARCHITECTURAL
KNOWLEDGE IN FILE-BASED DOCUMENTATION

In [51] Jansen et al. identify AK retrieval challenges that partially stem from
above issues with organising AK. We describe in Section 4.2 how the challenges
can be alleviated by the ontology-based approach.

1. Architecture documentation understanding
Document understandability becomes more challenging when documenta-
tion size increases in large and complex systems [21]. The original intention
of the authors is often lost.

2. Locating relevant architectural knowledge
Knowledge is often spread over multiple documents [23] which makes it
hard to locate AK, especially if documents lack finer details.

3. Support for traceability between different entities
Providing traceability between documentation sources is difficult [49]. Text
and tables are limited in communicating different relationships.

4. Support for change impact analysis
Because decisions, requirements, and their relationships are usually not
explicit, it is often very hard to reliably analyze and predict the impact of
changes to the architecture.

5. Assessment of design maturity
Architecture design is difficult to evaluate if there is no status overview of
the conceptual integrity, correctness, completeness, and buildability of the
architecture [111, 9].

6. Credibility of information
AK often changes in large and complex systems and the cost to update
is sometimes prohibitive [51]. Documentation is quickly outdated and its
users lose confidence in its credibility [66].

Problems related to the above issues and challenges are reported by Rost et
al. in a recent survey [80] on SA documentation among practitioners working
in 33 companies around the world. The top three reported problems with the
representation of AK in the documentation that 109 of these practitioners work
with are 1) inconsistent and missing structure, 2) scattered information, and 3)
missing traceability.

3.2 Hypertext Documentation and Its Issues

Hypertext and wiki systems have been used in some software organisations for
SA documentation. The use of tags and categories can help to organise knowl-

42

3.3. CONCLUSION

edge. However tags quickly lose meaning when used arbitrarily. Hypertext is also
known as nonlinear text [22], yet its organisation remains linear with the use of
categories.

Hyperlinks provide cross-referencing by pointing to information, however, the
pointers do not specify the meaning of relationships. Without explicit semantics,
not all AK user will be able to understand an organisation of AK by means of
hyperlinks.

Several researchers [32, 22, 39] report that users of hypertext documents feel ’lost’
and have difficulty gaining an overview of the material being read and how this
material is interrelated [106]. Likewise, users of wiki-systems may also experience
a lack of structure when navigating and finding relevant information [14].

Hypertext systems address AK retrieval challenges 2 and 3 (in Section 3.1) to
some extent using hyperlinks and challenge 6 using version control, e.g., in wikis.
However, because hyperlinks do not have specific semantics, they are not practical
for filtering and querying AK based on the properties of relationships between
AK. This is necessary for effectively addressing AK retrieval challenges 1, 4, and
5.

Semantics can be conveyed by named hyperlinks in hypermedia systems [118],
hyperlinks in knowledge-based hypertext [70], and labelled links in spatial hyper-
text systems. Solis et al. describe a spatial hypertext systems for AK retrieval in
[90] and its qualitative evaluation in [89], which is the only study on using spatial
hypertext for AK retrieval that we know of.

3.3 Conclusion

We studied literature to identify how AK is typically retrieved from file-based
documentation. Many AK retrieval challenges reported in practice stem from
limitations of linear file-based documentation organisation. This AK organisation
makes it hard to separate concerns, and comprehensively organise interrelated AK
to support the AK needs of all document users. Hypertext-based documentation
used in practice lacks the semantics to fully address the limitations and challenges
of file-based documentation. This suggests that there is room for improving AK
retrieval practice.

43

4
Ontology-based Architecture

Documentation Approach

In this chapter we investigate how an ontology can be used for retrieving AK from
SA documentation (RQ2). We first give background information on the use of
ontologies for organising and retrieving AK. We then introduce an ontology-based
documentation approach that consists of a software ontology and semantic wiki
tool that we optimized for SA documentation.

Section 4.1 details on ontologies for SA documentation in related work and how an
ontology can be used to organise and retrieve AK as part of an ontology-based
SA documentation approach that we propose. The proposed approach makes
use of a semantic wiki, and we describe in Section 4.2 how it was adapted for
storage and retrieval of SA documentation, and how it can address AK retrieval
challenges. Section 4.3 describes in detail how AK in SA documentation content
is annotated in the semantic wiki. Section 4.4 discusses related work and Section
4.5 concludes this chapter.

4.1 Software Architecture Ontologies

“An ontology” explicitly specifies the conceptualization of a domain [41], i.e. “an
ontology” refers to a formal domain model in which concepts and relationships
among concepts are described [69]. Ontologies enable a hierarchical classification
of interrelated domain concepts and can be represented using an Resource De-
scription Framework (RDF) Schema or the more expressive Web Ontology Lan-
guage (OWL). The use of RDF makes ontologies human readable and machine-
interpretable, allowing querying of and inference over knowledge.

45

CHAPTER 4. ONTOLOGY-BASED ARCHITECTURE
DOCUMENTATION APPROACH

Ontologies, RDF, and OWL are part of the semantic web paradigm which aims
to support more advanced knowledge management systems in which knowledge
is retrieved via query answering (replacing keyword-based search) and presented
in a human-friendly way [5]. Several ontologies and domain models have been
proposed in recent years for expressing AK in order to capture, manage, and
share architectural design decisions explicitly [84] as well as providing a common
vocabulary and a level of precision needed for making architecture decisions [4, 60]
and reusing architecture documents [119].

In this study we use the lightweight software ontology from [104] for annotating
knowledge in architecture documents. We chose to use the lightweight software
ontology because it is a general-purpose ontology; it contains architectural con-
cepts that are commonly documented in a software project [104]. This ontology
was built to support use cases around typical activities of architects [103]. The
lightweight ontology is designed to be flexible so that it can be adapted for spe-
cific application domains. More information about the core elements of such an
ontology can be found in [103].

Various other general-purpose ontologies have been proposed in [8, 119, 63, 4, 68]
for describing commonly documented AK concepts in software projects. Many
AK concepts in the lightweight software ontology are also described in other
general-purpose ontologies, e.g., requirements in [8], architecture element such as
components, subsystems, and interfaces in [119] and [63], and all aforementioned
AK concepts together with decisions in [4] and [68].

Figure 4.1 depicts the classes and relationships in the lightweight software on-
tology1. Classes that were added to support the AK concepts used in one of
the experiment domains are appended with “(Océ)” and are explained in Section
6.1.3. We added concepts ’Wikipage’ and ’Diagram’ to support storage of SA
documentation. We illustrate the full ontology in Figure 4.1 with a software de-
velopment scenario below (the classes are marked boldface and the relationships
are marked italic):

A software architect makes a decision that non-functional requirement ‘con-
figurability’ is realized by the architecture. The decision results in behaviour
‘user preferences’ which satisfies the non-functional requirement ‘configura-
bility’ and a new functional requirement ‘set user preference’. When a software
engineer implements behaviour ‘user preferences’, s/he needs to know which set-
tings can be changed by and stored by this behaviour. S/he also needs to know
the interfaces that are necessary to realize the behaviour and possibly the de-
tails on the components or subsystems that offer these interfaces. When
implemented, the behaviour can be tested using the requirements that are re-

1See http://www.archimind.nl/oce-ontology.owl.xml for OWL source file of this ontology.

46

http://www.archimind.nl/oce-ontology.owl.xml

4.1. SOFTWARE ARCHITECTURE ONTOLOGIES

Usability

Wikipage

Functional Requirement

Requirement

Non-Functional Requirement

Architecture

Subsystem Component

Decision

and other NFRs

Setting (Océ)

Behavior (Océ)

Interface (Océ)

Diagram

realized by

impacts
impacts

comprises of

is modeled in

<wikipage> contains knowledge about

depends on

realized by
results in

satisfies

qual_is_related_to

knowledge is located in <wikipage>

changed by

stored by

interface offered byoffers interface

part of

Performance

decision is about

offers interface

interface offered by

Design Alternative (Océ)

has alternative

req_is_related_to

Legend:

Inheritence

 relationship

Class

Semantic

relationship

=

=

=

realized by

Figure 4.1: Software ontology adapted for the Océ experiment domain

alized by the behaviour and under various settings that impact it. Wikipages
that contain knowledge about the aforementioned AK can provide additional con-
text.

The relationships and classes in the ontology are used for organising AK. Rela-
tionships between classes support documentation users in finding relationships
between AK. Each distinct ontology class and relationship has properties and
descriptions that explicitly define their meaning, allowing different AK users to
interpret them consistently and unambiguously. In the rest of this chapter, and
most of the thesis, we refer to relationships in the ontology as ’semantic relation-
ships’, because the names and properties of these relationships clearly convey

47

CHAPTER 4. ONTOLOGY-BASED ARCHITECTURE
DOCUMENTATION APPROACH

their meaning (as opposed to hyperlinks, see Section 3.2), and to make clear that
we do not write about another type of relationship.

4.2 ArchiMind Semantic Wiki

The use of a semantic wiki allows for navigation and presentation of classes and
semantic relationships in an ontology. A semantic wiki can provide benefits simi-
lar to traditional wiki-like systems for documentation, such as centralised storage
and access, text editing features, versioning, and collaboration mechanisms.

We used the OntoWiki tool [6] as the basis for the tool in our ontology-based
approach. OntoWiki is open source and aims to support collaborative knowledge
engineering. OntoWiki is similar to existing wiki systems (e.g., Wikipedia) and
additionally it offers web-based visualization and management of (ontology and
its instances in) knowledge bases and semantic-enhanced search facilities.

We based our choice for OntoWiki on evaluation of semantic wikis by Hoender-
boom and Liang [48] and Tamburri [99]. In [99] Tamburri used a literature study
to identify which requirements a semantic wiki for software knowledge manage-
ment should satisfy. OntoWiki satisfied most of these requirements compared
to other semantic wikis at the time, most notably faceted browsing, different
views, ontology browsing, semantic inference, and requirements for social collab-
oration [99]. Hoenderboom and Liang show in [48] that OntoWiki provides many
useful features for requirements engineering, especially semantic search and text
annotation features.

Adaptations were made to version 0.9.5 of OntoWiki in order to optimize it for
storage and retrieval of architecture documentation. We named the adapted
version ‘ArchiMind’. See http://www.archimind.nl/archimind/ 2 for a demo
of ArchiMind.

Figure 4.2 depicts part of the ArchiMind GUI in which red labels highlight the
different UI parts. Label A highlights the class navigation panel, used to retrieve
all instances of an ontology class. The class navigation shows the classes of the
ontology in Figure 4.1. The subclasses of Architecture and Requirement are not
shown in the panel. These subclasses (denoted by their inheritance relationships
to superclasses Architecture and Requirement in Figure 4.1) can be expanded by
clicking on the arrowhead to the right of the name of the superclasses. Label C
highlights a list with instances of class Requirement that were retrieved using the
class navigation panel.

2The ontology shown in the demo is different from the experiment ontology.

48

http://www.archimind.nl/archimind/

4.2. ARCHIMIND SEMANTIC WIKI

Figure 4.2: AK exploration and faceting in ArchiMind semantic wiki

Details and semantic interrelations of AK instances can be expanded in a tree-like
fashion using ’+’ buttons (Label B). This shows how AK is interrelated to other
AK. Requirement ’Compatibility’ is expanded in the list (Label C) in Figure 4.2.
Lists of AK instances can also be filtered based on keywords, as well as the classes
and semantic relationships in Figure 4.1.

Label D shows how the list of requirements is faceted. Columns, each representing
a facet, show the architecture elements and decisions that are related to the
listed requirements via semantic relationships ’realized by’ and ’depends on’ in
the ontology in Figure 4.1. Faceting allows users to view AK that has a certain
relationship to the listed AK. Users can facet AK based on, e.g., related decisions,
offered interface, and realized requirements.

File-based documentation content, e.g., from word processors and UML tools,
and its layout is stored in wikipages (see Label E) using a WYSIWYG editor.
’Wikipage’ is a class in the ontology in Figure 4.1 and instances of class Wikipage
are used to store documentation content. ArchiMind allows for semantic anno-
tation of phrases in documentation content that refer to AK instances, e.g., ’ex-
tractor ’ (an instance of AK type component) in the wikipage content in Figure
4.2 (see Label E). The annotated text on the wikipages is highlighted yellow and,
when one clicks it, a pop-up menu shows the full description of the AK instance,

49

CHAPTER 4. ONTOLOGY-BASED ARCHITECTURE
DOCUMENTATION APPROACH

its relationships to other AK instances, and to other wikipages that describe it.
The annotation features are explained in more detail in Section 4.3.

The semantic annotations prevent issues with ambiguity, synonyms, homonyms,
spelling errors, abbreviations, and context-dependent interpretation of AK in
documentation content. This alleviates challenge (1) Architecture documentation
understanding, described in Section 3.1.

When a fragment of text is annotated on a wikipage, a semantic relationship
is created from the wikipages to the AK instance(s) that the annotated text
fragment refers to, and vice versa. AK instances become traceable to the various
fragments of documentation content (wikipages) that describe it and vice versa.
For example, a users that clicks on requirement ’Compatibility’ shown in Figure
4.2 (Label C) will be able to see and navigate to wikipage ’24 Appendix - Push
and Pull data’ (Label E) in which the requirement is annotated. The user can
click on annotated text ’extractor ’ on this wikipage to visit a description of this
AK instance (component extractor). This helps users to locate (sources of) AK
descriptions and thereby alleviates challenge (2) Locating relevant architectural
knowledge, described in Section 3.1.

Semantic relationships in the ontology allows users to see what and how AK
instances are interrelated, e.g., “a requirement is realized by components”, and
thereby alleviates challenge (3) Traceability. If changes are made to an AK in-
stance, e.g., a decisions is modified, a user can see what other AK might be
affected, e.g., requirements depending on the decision. This alleviates challenge
(4) Change impact analysis. Use of the ontology structure to check the existence
of semantic relationships alleviates challenge (5) Assessing design maturity. For
example, the correctness and completeness of an architecture can be assessed by
checking if all requirements are realized by architecture elements and the build-
ability [9] of an architecture can be assessed by following the semantic relations
that indicate dependencies between components.

Dublin Core [62] is used to store documentation meta-data, e.g., date, author,
and version of documents. Next to the native version control of knowledge base
instances in OntoWiki, also basic version control of wikipages was implemented in
ArchiMind. This allows users to check whether documentation is up-to-date and
can be trusted to reflect the AK in the running software project, thereby allevi-
ating challenge (6) Credibility of information. The up-to-dateness of information
is important for its credibility because software and architecture continuously
evolve during a project and the documentation often lags behind.

The effort to maintain documentation, which is important for the adoption of
a documentation approach, is also affected by the alleviation of aforementioned
AK retrieval challenges. The presence of version and history information (to

50

4.3. ANNOTATING SA DOCUMENTATION IN ARCHIMIND

alleviate challenge 6) also helps to see what documentation content is current
during maintenance. Moreover, one can locate the documents in which AK has to
be changed (challenge 2) and find related AK (challenge 3) that is affected by the
changes made. This helps to prevent that a redundantly recorded AK description
is only updated in one location during document maintenance. The semantic
annotation of AK on wikipages introduces additional costs during maintenance,
however, these can be minimized using an automatic annotation mechanism.

4.3 Annotating SA Documentation in ArchiMind

The retrieval of AK from file-based SA documentation suffers from issues with
synonyms, homonyms, spelling errors, abbreviations, ambiguity, and context-
dependent interpretation. Storing and annotating the content of software doc-
umentation in semantic wiki pages can alleviate these issues and supports AK
retrieval. This section reports on the application of semantic annotation and
knowledge retrieval using the ArchiMind semantic wiki system. Knowledge in
documentation is annotated by indexing text with the lightweight software on-
tology in [104]. The process and the use-cases of this semantic annotation of
software documents are described. The semantic annotation mechanism is illus-
trated by examples and use cases in the ArchiMind semantic wiki.

4.3.1 Semantic Annotation of Knowledge in Software Doc-
umentation

A WYSIWYG editor, with image upload functionality, was implemented to allow
users to copy software documentation content in popular text editors and paste it
in ArchiMind. Software specifications are stored as HTML in the content section
of Wikipage instances of the ontology in Figure 4.1. The ontology contains Dublin
Core [62] data properties to allow for specification of metadata (author, date,
type, etcetera) for many possible sources of Software Engineering (SE) knowledge
such as official documents, meeting notes, code snippets, interface specifications
and e-mails.

Software documentation wiki pages are annotated in ArchiMind by indexing text
to ontology instances with the following actions:

1. Select the text fragment that can be indexed to a SE knowledge instance
of the ontology. Figure 4.3 depicts an example where the text "order_-
config_mngr" is selected.

51

CHAPTER 4. ONTOLOGY-BASED ARCHITECTURE
DOCUMENTATION APPROACH

Figure 4.3: In-page annotation

2. Select the (sub)class in the ontology which contains the SE knowledge in-
stance that the selected text should be indexed to. Ontology class selection
is done in the in-page annotation menu. In Figure 4.3 this is class "compo-
nent".

3. Select the SE knowledge instance, of the selected (sub)class, to which the
selected text should be indexed. In the example in Figure 4.3 this is the
instance with label "order configuration manager". It is assumed that an SE
knowledge instance already exists. Otherwise it should be created before
indexing.

Data from the indexing action above is stored in a separate annotation database
table as (URI: annotated Wikipage), (string: indexed text), (URI: SE knowledge
instance). When viewing a Wikipage, content of the Wikipage is checked against
this database table and text that has been indexed is highlighted yellow. Clicking
on the highlighted text will show the details of the SE knowledge instance(s) that
the text is indexed to. This is further illustrated in the next section and depicted
in Figure 4.4.

The indexing actions above are also used to annotate the Wikipage itself. A triple
is stored in the knowledge base that captures the semantic relationship between
Wikipage and the SE knowledge instance to which the text on the wiki page
has been indexed to. The triple is stored as (URI: annotated Wikipage), (URI:
contains knowledge about <relation>), (URI: SE knowledge instance). Another
triple, creating a semantic relationship in the opposite direction, is stored as:

52

4.3. ANNOTATING SA DOCUMENTATION IN ARCHIMIND

Figure 4.4: In-page knowledge retrieval

(URI: SE knowledge instance), (URI: knowledge is located in <relation>), (URI:
annotated Wikipage). The rationale for storing this triple is increased usability.
Inverse relations can be shown in ArchiMind, however, this requires an extra
action and knowledge of this feature.

4.3.2 Use of annotations in knowledge retrieval

Consider a software engineer who is interested in the requirements realized by
component "order_config_mngr". A keyword search in ArchiMind on "order_-
config_mngr" returns the Wikipage, annotated in the previous section, with "or-
der_config_mngr" highlighted yellow in the Wikipage content, as depicted in
Figure 4.4. When clicking on on the higlighed text, the indexed knowledge on a
component with label "order configuration controller" and abbreviation "OCC ",
is shown. When properly defined, the SE knowledge instance contains semantic
relationships to the requirements and behavior it realizes and the settings that
impact it. The SE knowledge instance may also contain relations to other in-
dexed wiki pages that have knowledge about it, but use an official, misspelled,
abbreviated or synonymous name.

Also consider searching for "order" or "configuration" when these names are

53

CHAPTER 4. ONTOLOGY-BASED ARCHITECTURE
DOCUMENTATION APPROACH

homonyms for classes, behavior, features, or functions. After semantic anno-
tation the search results will include the correct SE knowledge instance and the
Wikipage that have an index to the exact SE knowledge instance, e.g. a class.
Wikipage instances listed in keyword search results contain expandable <contains
knowledge about> relations to SE knowledge indexed in its content. These se-
mantic relationships to and from the Wikipages, and the semantic relationships
between SE knowledge instances aid users in knowledge retrieval.

4.4 Related Work

Several tools and approaches for managing AK exist such as ADDSS [18], Archium
[52], AREL [102], PAKME [7], and SEURAT [15]. See [67] for an overview of AK
management tools. These tools and approaches can be used to store, analyse, and
retrieve formalized AK with semantics and they support many architecting activ-
ities. They differ from our approach in that they are not ontology-based (except
for SEURAT [15]) and have less support for storing, managing, and retrieving
knowledge contents stored in small and searchable chunks.

Happel and Seedorf [46] proposed documentation of Service Oriented Architec-
tures (SOA) using Ontobrowse semantic wiki. A textual description is given of
what typically should be included in an ontology for documenting SOAs, but no
actual ontology is described. Their focus on SOA and lack of an ontology is a
differentiation to our work.

Su et al. proposed KaitoroBase [95], a tool for exploring architecture docu-
ments, built on freebase semantic wiki. KaitoroBase allows for visualization and
non-linear navigation of SADs stored in wikipages. A meta-model based on Ar-
chitecture Driven Design is used, however, there are no details on whether other
types of architecture documentation are supported. KaitoroBase provides ex-
ploration from a single node (say a single requirement), whereas our approach
allows exploration from a set of related nodes (say all requirements realized by a
component).

In Section 6.7 we discuss two other ontology-based SA documentation approaches
together with their evaluation in industry.

54

4.5. CONCLUSION

4.5 Conclusion

In this chapter we described how an ontology can be used for organising and
retrieving AK in SA documentation, and discussed similar usage of ontologies
in related work. We introduced an ontology-based SA documentation approach
which uses a lightweight software ontology and semantic wiki for AK retrieval.
We described in detail how the ontology-based approach can address AK retrieval
challenges identified in Chapter 3.

55

5
An Exploratory Study on Ontology

Engineering for Architecture
Documentation

This chapter illustrates how to build an ontology for SA documentation in a soft-
ware project (RQ3). The usefulness of SA documentation depends on how well
its AK can be retrieved by the stakeholders in a software project. Recent findings
show that the use of ontology-based SA documentation is promising. However,
different roles in software development have different needs for AK, and building
an ontology to suit these needs is challenging. In this chapter we describe an
approach to build an ontology for SA documentation. This approach involves the
use of typical questions for eliciting and constructing an ontology. We outline
eight contextual factors, which influence the successful construction of an ontol-
ogy, especially in complex software projects with diverse AK users. We tested
our ’typical question’ approach in a case study and report how it can be used for
acquiring and modeling AK needs.

5.1 Introduction

We built an ontology for the SA documentation in a software industry project,
in order to implement ontology-based SA documentation. To do so, we had to
consider what ontology engineering approach would be suitable. This chapter is
about building the ontology structure for ontology-based SA documentation. It
is not about instantiating (or ’populating’) this ontology or about the experiment
reported in Chapter 6, in which the ontology-based approach is evaluated.

57

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

Developing an ontology for a software project in industry should be economically
feasible, i.e. it should be efficient and accurate, for organization and individual
users [47]. If the ontology is inaccurate, documentation users will not retrieve or
understand the AK that they need. Users would lose interest and confidence in
ontology-based SA documentation, and revert to other means to get the required
AK.

In the context of large software projects it can take much time and effort to
develop an accurate ontology. Knowledge acquisition from many diverse stake-
holders, each having their own needs and views [9] of AK, is required to build an
accurate ontology. These users of AK are generally pressed for time and their pri-
mary interest is seldom about making documentation. Moreover, the AK needed
by users in large software projects is often domain specific and complex.

Developing the ontology is not a one-time effort because the AK needs of SA doc-
umentation users shift over time. For example, during development users will be
interested in AK that relates requirements to the components implementing those
requirements, while during integration testing (other) users might be interested
in relations between software releases and requirements coverage. Shifting AK
needs necessitates a regular evaluation and revision of the constructed ontology.

In this chapter we describe eight contextual factors in software projects. These
contextual factors influence ontology engineering for SA documentation, espe-
cially in large and complex projects. We devised a ’typical question’ approach
for ontology construction that takes the contextual factors in large and complex
software projects into account. In this approach typical questions about AK are
acquired from SA documentation users and used to build an ontology. These
typical questions are frequently asked by AK users1 during their everyday tasks,
i.e. questions that represent their everyday AK needs.

We applied the ’typical question’ approach in an exploratory industrial case study
which provided several insights. In the case study we explored how well our ’typ-
ical question’ approach was applied to construct a useful ontology by acquiring
and modeling AK needs of many diverse users that use SA documentation in
different projects and product lines. The ’typical question’ approach can contin-
uously refine the AK ontology when AK needs evolve.

This chapter is motivated by the lack of applied ontology engineering approaches
for constructing an ontology for SA documentation. We make the following con-
tributions:

• Illustrate a ’typical question’ approach for constructing the ontology used
in ontology-based SA documentation.

1We consider AK users the same as SA documentation users in this work.

58

5.2. BACKGROUND

• Outline important contextual factors that influence ontology engineering
for SA documentation in software projects.

• Demonstrate how the ’typical question’ approach can be applied through
an exploratory case study in a software industry project.

This chapter is organized as follows. Background of ontology-based SA docu-
mentation, ontology engineering, knowledge acquisition, and Grounded Theory
is given in Section 5.2. Section 5.3 describes our ’typical question’ approach for
ontology construction. Section 5.4 describes the contextual factors that influence
ontology engineering for SA documentation in software projects. Section 5.5 re-
ports the exploratory case study and the lessons learned from it. Section 5.6
presents related work and Section 5.7 concludes this chapter.

5.2 Background

5.2.1 Ontology Engineering for SA Documentation

The ontology used in ontology-based SA documentation determines what AK one
can retrieve using its structure and semantics. One can use a predefined ontology
(as in [45]) or build an ontology specifically for a software project domain. A
domain specific ontology can be built, e.g., by letting document authors and
architects identify AK concepts in existing SA documentation [51].

The approach proposed by Jansen et al. in [51] is, to our current knowledge, the
only approach aimed at deriving a domain specific ontology for ontology-based
SA documentation. Their use of existing documentation however has several
limitations:

• Existing SA documentation might not be available.

• Existing SA documentation might not convey the AK needed by all SA
documentation users.

• Experts that identify AK concepts from SA documentation might not know
the AK needs of all users.

Building and maintaining an ontology for a certain domain (such as in this case
the domain of AK) is called ontology engineering. An overview of the ontology
engineering phases, adapted and simplified from [87], is depicted in Figure 5.1.
Arrows in this figure represent a transition to another phase.

59

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

Domain analysis

Conceptualisation

Ontology use

Evaluation
Maintenance

Figure 5.1: Ontology engineering phases

The process starts with the domain analysis phase which includes identification
of the domain scope and the AK needs of users of SA documentation.

AK concepts are derived from AK needs and used to build a domain ontology
in the conceptualization phase. The quality of the constructed ontology is then
evaluated in the evaluation phase. Domain analysis, conceptualization and eval-
uation is iterated until a satisfactory ontology is obtained.

After construction the ontology is used to annotate and retrieve AK from SA
documentation. The ontology is maintained to cope with evolving AK needs and
concepts.

5.2.2 Knowledge Acquisition

Building an AK ontology requires knowledge acquisition during the ontology
engineering phases described in the previous section. Knowledge acquisition is
part of building knowledge-based systems in general. The suitability of knowledge
acquisition approaches differs per domain. A separation can be made between
top-down, middle-out and bottom-up approaches.

Top-down approaches start modelling based on a general model, with extension
and refinement to suit specific needs. These approaches can be efficient and
accurate for well-defined domains in which an ontology engineer knows quite
well about the general concepts, questions, tasks, and use-cases. Bottom-up ap-
proaches are used to build a model based on specific domain knowledge. These
are suitable for domains in which an ontology engineer cannot predetermine all
the concepts, questions, tasks, and use-cases. Such domains can be broad, multi-
disciplinary, or novel. Middle-out approaches combine a top-down and bottom-up
approach. These work well for domains that are partially well-defined and par-
tially specific.

60

5.3. ONTOLOGY ENGINEERING USING THE ’TYPICAL QUESTION’
APPROACH

5.2.3 Grounded Theory

Our ’typical question’ approach makes use of coding techniques from Grounded
Theory in which a domain theory is generated by empirical generalization [40].
This is a bottom-up approach to knowledge acquisition (see previous section
5.2.2).

First, data is collected in the domain under investigation, and patterns that indi-
cate concepts are identified from this data. The identified concepts are aggregated
into categories. Second, properties of the identified categories are developed by
constantly comparing the categories with collected domain data. These proper-
ties are developed with respect to a ’core’ or ’central’ category [93] that is the
subject of investigation in the domain. Memos capture thoughts about the pos-
sible concepts, categories, and relationships in the domain data. Finally, if no
new properties can be identified from domain data (categories are ’saturated’),
the domain model is compared to literature.

Urquhart et al. discuss several myths about Grounded Theory in [109] and con-
clude that Grounded Theory is a rigid and flexible method that is suitable for use
in information systems research. Grounded Theory is able to generate theories
that are relevant to practitioners [3] and that are ’grounded in data’ [40].

Grounded Theory can be used during ontology engineering when analysing a
domain and constructing an ontology. An ontology engineer starts with the
collection and analysis of domain data in the domain analysis phase (See Figure
5.1 and Section 5.2.1). Similarly, data is collected and analyzed in a domain of
interest when one uses Grounded Theory in the domain analysis phase. In the
ontology conceptualization phase an ontology engineer can use Grounded Theory
to create classes (or ’categories’) and relationships between classes.

5.3 Ontology Engineering using the ’Typical Ques-
tion’ Approach

We devised an ontology engineering approach that uses typical questions to create
an ontology in the context of a large and complex project at Océ Technologies.

The ’typical question’ approach focuses on the elicitation of questions that AK
users normally try to answer during their use of SA documentation. We want
to understand what AK users typically ask of the SA documentation. Knowing
the detailed knowledge needs of AK users allows one to create SA documentation
that is optimal for its users and therefore cost-effective [31].

61

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

The typical questions convey what concepts and relationships AK users want to
retrieve from SA documentation. An ontology engineer identifies these concepts
and relationships on basis of ’typical questions’ to construct an ontology. This on-
tology is subsequently used to support retrieval of the concepts and relationships
from SA documentation.

QA / NFR:
QA02 modifiability
QA04 usability
QA12 performance
Option #2
ID: Concern#5-Opt2
Descr: Special view for
emergency procedure.
Status: Accepted
Impacts: Dec. 13, 14 15
Compon. ZZ2, GUI

QA / NFR:
QA02 modifiability
QA04 usability
QA12 performance
Option #2
ID: Concern#5-Opt2
Descr: Special view for
emergency procedure.
Status: Accepted
Impacts: Dec. 13, 14 15
Compon. ZZ2, GUI

QA / NFR:
QA02 modifiability
QA04 usability
QA12 performance
Option #2
ID: Concern#5-Opt2
Descr: Special view for
emergency procedure.
Status: Accepted
Impacts: Dec. 13, 14 15
Compon. ZZ1, UI

'What decision impacts behaviour show_order?'
'What component realizes REQ Y1?'

Ontology-based software architecture documentation

'What decision impacts confirm booking?'
'What component realizes RC.23?'

'What [decision] <impacts> [behaviour]?'
'What [component] <realizes> [requirement]?'

Step 1 - Identify
 AK needs
from users

Acquired typical questions

Step 6 -
Iterate

update AK
needs

Step 2 - Coding of typical
 questions Step 4 - Instantiate codified questions

Annotate AK

Step 5 - Resolve conflicting interpre-
 tations and improve
 ontology

-C o n te nt
-R elea sed

-D a te

W i k i p a g e

-D e scrip t ion

F u n c tio n a l R e q u ir e m e n t -Ide n tifie r
-De scrip tio n

R e q u ir e m e n t

-D e scrip t ion
-Qu ality Att rib u te m ea sure

N o n-fu n c ti o n a l R e q u ir e m e n t

-D e scrip t io n

A r c h i te c tu r e

-D e scrip tio n

S u b s y s te m

-De scrip tio n

C o m p o n e n t

-D e scrip tio n

D e c i s i o n

a n d o th e r Q A s

-D escrip tio n

Se tt in g

-D e scrip t ion

B e h a v io r

-D e scrip tion

I n te r fa c e

-D e scrip tio n

D ia g r a m

realized by impacts

impacts

comprises of

is modeled in

<wikipage> contains knowledge about

depends on

realized by

results insatisfies

qual_is_related_to

knowledge is located in <wikipage>

changed by
stored by

interface offered byoffers interface

part of

U s a b il i ty

E ffic i e n c y

decision is about

offers interface

interface offered by

-De scrip tio n

D e s i g n A l te r n a ti v e

has alternative
req_is_related_to

Domain ontology Domain SA documentation

Step 3 - Build
 ontology

Figure 5.2: Overview of the proposed ’typical question’ approach for ontology
engineering

Figure 5.2 depicts an overview of our approach. In this approach the process
of creating an ontology requires one or more steps in each ontology engineering
phase.

In the domain analysis phase of ontology engineering, an ontology engineer ac-
quires typical questions from documentation users to capture their AK needs
(step 1). In the conceptualization phase these typical questions are codified (step
2) and modeled in an ontology (step 3) using coding mechanisms from Grounded
Theory. In the evaluation phase typical questions are instantiated (step 4) to
resolve conflicting interpretations of AK concepts and to evaluate and improve
the constructed ontology (step 5).

62

5.3. ONTOLOGY ENGINEERING USING THE ’TYPICAL QUESTION’
APPROACH

In the ontology use phase, existing file-based documentation is annotated and
the semantic wiki is used for AK retrieval. During the maintenance phase the
techniques to acquire the typical questions (in step 1) are iterated to detect
changes of AK needs and if the ontology needs to be updated (step 6).

Interviews, daily logging of typical questions, and mailing lists are techniques that
can be used to acquire typical questions. These are further detailed in Section
5.4.1.

5.3.1 Domain Analysis Phase (Step 1)

In the first step of our approach AK needs are identified from all users, or a repre-
sentative subset of users, by acquiring their typical questions about AK. These are
questions that are representative of what AK users ask themselves during their
everyday activities, e.g., during design, development, quality assurance, testing
etc. For example, a developer might ask: “what components and behavior are
impacted by my change in this subsystem?”. Snippet 1 gives an example of two
typical questions.

Snippet 1 - Example of typical questions

• “Which module assures adherence to requirement ‘24 - admin login’?”

• “What quality attributes are realized by subsystem ‘transaction handler’?”

Normally such typical questions are answered by reading architecture and de-
sign documents, inspecting source code, or consulting colleagues. Instead we use
these typical questions in our approach to build an ontology which in turn pro-
vides users with structure and semantics to answer these typical questions from
ontology-based SA documentation.

A core idea behind the use of typical questions is the assumption that the AK
needed in any use-case, scenario, or task can be accurately represented as a set of
questions that should be answered. As such, acquiring sets of typical questions
allows for a fine-grained and detailed specification of the AK needed for tasks,
use-cases, and scenarios. Recording or recalling these typical questions can reduce
difficulties for users in articulating domain knowledge [107], i.e. increase efficiency
by reducing effort. This addresses difficulties in acquiring AK needs of diverse
users in a complex and multi-disciplinary domain.

Benefits can be gained by the use of typical questions that are 1) efficiently
acquired from many users 2) tangible for users, 3) accurately represent AK needs
and daily practice of users, 4) do not require extensive abstract thinking from

63

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

users when acquired, yet 5) convey much conceptual information, and 6) can be
used throughout the ontology engineering phases. These benefits help to minimize
the effort required from individual users of SA documentation, as well as the total
effort required in complex domains with many diverse users.

5.3.2 Conceptualization and Evaluation Phase (Steps 2-5)

In the ontology conceptualization phase an ontology engineer identifies AK con-
cepts from typical questions in order to build an ontology. AK concepts are
identified from phrases, i.e. one or more words, in the acquired typical questions.
Phrases in typical questions are classified as representing a class, relationship,
or attribute in the ontology. This is done by applying coding techniques from
Grounded Theory, discussed in Section 5.2.3.

An ontology engineer starts with open coding in which textual data, a typical
question in this case, is broken down into discrete parts, e.g., words and phrases.
These discrete parts are examined in detail and classified (or ’categorized’2) by
comparing data for conceptual similarities and differences [93]. Snippet 2 gives
examples of typical questions in which open coding, or ’labeling’, i.e. assigning
conceptual names (in italic between square-brackets), is applied to phrases that
refer to AK concepts. Various labels are applied to illustrate possible concep-
tualizations in open coding. This process corresponds to the first phase of the
overall process of Grounded Theory described in Section 5.2.3.

Snippet 2 - Example of intial open coding of typical questions

• “Which module [module, component, hardware, subsystem] assures adherence
to [constraints, satisfies, realizes] requirement ‘24 - admin login’ [functional or
non-functional requirement, Quality Attribute]?”

• “What quality attributes [quality attribute, non-functional requirement] are
realized by [constraints, satisfies, realizes] subsystem ‘transaction handler’ [sub-
system, component, module]?”

Axial (or ’theoretical’) coding is then used to (re)assemble and interrelate the
classes, identified during open coding, to their sub or superclasses. Selective
coding is then used to integrate, interrelate and refine the classified concepts
in an ontology based on the central ’theme’, ’idea’, or ’category’ [93] of the

2The term ’category’ is used in Grounded Theory literature, however we adopt the term
’class’ instead of ’category’ for consistency with the rest of the chapter.

64

5.3. ONTOLOGY ENGINEERING USING THE ’TYPICAL QUESTION’
APPROACH

investigation. This central theme is: “AK that users need to retrieve from SA
documentation”.

Axial and open coding are used in the second phase of Grounded Theory described
in Section 5.2.3. The described coding approach is based on the method described
by Strauss and Corbin in [93]. Snippet 3 shows an example of coded phrases in
typical questions after completion of above coding steps.

Snippet 3 - Example of refined codified classes and relationships in
typical questions

• “Which component [component (class)] assures adherence to [satisfies (relation-
ship)] requirement ‘24 - admin login’ [functional requirement (class)]?”

• “What quality attributes [non-functional requirement (class)] are realized by
[realized by (relationship)] subsystem ‘transaction handler’ [subsystem (class)]?”

An ontology engineer may decide to execute one or more iterations of the coding
steps, e.g., after evaluation by users. Ideally the AK concepts in typical questions
can be directly mapped to an ontology structure. This is illustrated in Figure
5.3 in which classes are denoted between square brackets, relationships between
angle-brackets, and instances of classes between single-quotes. In practice refine-

<depend on>
What [component(s)] <satisfy> [requirement(s)] '24'

Which [decision(s)] <results in> [subsystem] 'UsrM'

Which

<are about>

'GUI'

Which

What

are
<realized by>

 '2'

'ProcessHndlr'

Figure 5.3: Ideal mapping of coded typical questions into AK ontology structure

ment of the AK concepts is needed as not all users will use the same phrasing
for their AK needs in typical questions. For example, phrases ’setting’, ’config-
uration’, ’variability’ and ’preset’ might all refer to 1) the same AK concept, 2)
distinct yet related AK concepts (e.g., subclasses), or 3) different AK concepts in
the domain. An example for refinement of relationships between AK concepts is
the set of phrases ’constraints’, ’required’, and ’realizes’. Even if the same name

65

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

is used for a concept in many typical questions, we cannot assume based on this
frequency that all users have the same interpretation of this concept. Users might
mean different things with the same phrase.

An ontology engineer evaluates the interpretation of AK concepts by presenting
users with different instantiations of typical questions that have been coded and
classified. Phrases in these typical questions that have been coded to an ontology
class or relationship are replaced with different instances of the same class or
relationship, e.g., instances ’requirement X1 ’, ’R2 - admin login’, and ’Req. 3’
for class requirement. This is akin to validation in Grounded Theory where
respondents in a study comment on how well the theory, e.g., represented as a
’story’, fits their case [93].

An ontology engineer subsequently asks users feedback about the representative-
ness, correctness, and accuracy of these typical questions with different instances
of AK concepts. This supports identification of conflicting interpretations of AK
concepts (step 5) between users working in diverse roles and disciplines. Snip-
pet 4 gives the typical questions from Snippet 3 with different instances of AK
concepts.

Presenting typical questions with different instances of AK concepts allows users
to evaluate the concepts in different contexts. The interpretation of an AK con-
cept may differ between AK users when they are presented with different instances
of the AK concept. Part of the evaluating users may remark that “allow backup
scheduling” (in Snippet 4) is a non-functional requirement or feature instead of
a functional requirement. This identifies incorrect or inaccurate classification of
AK concepts in typical questions.

Snippet 4 - Example typical questions with instantiated AK concepts
for evaluation

• “Which component satisfies functional requirement ‘18 - allow backup schedul-
ing’?”’

• “What non-functional requirements are realized by subsystem ‘Order configu-
ration’?”

Grounded Theory coding allows an ontology engineer to construct an ontology
“grounded in data” with relative high efficiency and accuracy and without requir-
ing extensive effort from documentation users. This requires minimal guidance by
domain experts which might not be readily available in many software projects.

After the ontology is conceptualized an ontology engineer may decide to compare
the ontology to other ontologies, e.g., in literature. This allows identification of

66

5.4. CONTEXTUAL FACTORS IN ONTOLOGY ENGINEERING

useful domain-independent AK concepts that may be missing in the constructed
domain specific ontology.

5.3.3 Ontology Maintenance Phase (Step 6)

When AK needs shift and concepts evolve the ontology has to be maintained
to remain accurate. The ontology engineer can identify a shift in AK needs by
re-acquiring typical questions (step 1). An ontology engineer then compares the
newly acquired typical questions and those previously acquired. If AK needs
have significantly shifted, steps 2 through 5 of the approach can be repeated
to update the ontology. Changes in AK concepts are detected in step 4 of the
approach when newly acquired typical questions are instantiated and evaluated
by AK users.

The necessity of reacquiring typical questions should be estimated or planned at
the start of each software project phase. Estimating the necessity of reacquiring
typical questions or the required accuracy of this reacquisition is outside the scope
of this chapter.

5.4 Contextual Factors in Ontology Engineering

In the introduction section of this chapter we briefly described how the develop-
ment of an SA documentation ontology is affected by its users and the software
project context. These Contextual Factors (CF) influence the use of the ’typical
question’ approach. In agile software development, we learn that contextual fac-
tors influence the successful adoption of agile practices [61]. We recognize that
these factors are also applicable in terms of producing SA documentation.

Production of SA documentation takes place in the context of software develop-
ment projects and the context of a project and its products is captured in SA
documentation. Moreover, users of SA documentation in a project determine
what AK is relevant to capture in SA documentation. Several characteristics of
the SA documentation users influence how one can most effectively find out what
AK is relevant to these users.

An ontology engineer would need to consider these factors whilst building a suit-
able ontology for SA documentation:

CF1 Number of AK users - impacts on the extent of AK needs acquisition. For
example, interviewing a large number of AK users might be infeasible in a
project.

67

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

CF2 Accessibility of AK users - communication with AK users can be constrained
by their accessibility, e.g., in terms of location and schedule.

CF3 Commitment of AK users - influences how much time and effort users are
willing to spend on providing their AK needs and ontology evaluation.

CF4 Diversity of AK users - the role, experience, and education background can
impact on the interpretation of AK concepts between users.

CF5 Product domain complexity and specificness - influences the effort required
of an ontology engineer to understand and model AK concepts in a software
product domain.

CF6 Product domain multidisciplinarity - impacts on how many different AK
concepts, e.g., from the healthcare, embedded systems, and chemistry dis-
cipline, are needed by AK users.

CF7 Shifting AK needs - Users provide their AK needs based on their roles and
the current tasks. When a project progresses and their tasks change, these
AK needs may shift. Additional AK needs may be required to enhance an
ontology.

CF8 Volatility of AK concepts - AK concepts can change over time. This affects
the accuracy of the AK concepts initially captured in an ontology.

5.4.1 Contextual Factors Influencing the Acquisition of Typ-
ical Questions

During the acquisition of typical questions, we noticed that contextual factors
influenced what acquisition techniques we used. We have used three knowledge
acquisition techniques (see Table 5.1) in our case study. We summarize, based on
our experience, how contextual factors ’user accessibility’ and ’user commitment’
influence the performance of each acquisition technique.

Table 5.1: Evaluation of techniques for acquiring typical questions

Technique for acquir-
ing typical questions

Suitable for Contex-
tual factors

Results in

Interviews high user accessibility and
commitment

High accuracy and low ef-
ficiency

Daily log medium user accessibility
and commitment

Medium accuracy and ef-
ficiency

Mailing list low user accessibility and
commitment

Low accuracy and high ef-
ficiency

68

5.4. CONTEXTUAL FACTORS IN ONTOLOGY ENGINEERING

Interviews with AK users allow an ontology engineer to clarify their responses and
thoughts, e.g., using examples, and this allows an ontology engineer to acquire
AK needs. Interviews however require high commitment, accessibility, and much
time and effort from users and ontology engineer. Relatively high accuracy is
traded off against lower efficiency.

A daily log, in which users consistently record their typical questions each day,
requires a fair amount of accessibility to and commitment of users. Even though
the time-efficiency and required effort is better than that of interviews, it is
less accurate due to the lack of direct interaction with an ontology engineer.
Accuracy becomes even lower when user commitment is low and AK needs are
not consistently recorded every day.

The use of a mailing list provides time-efficient and effortless acquisition of typical
questions, even with low user commitment and accessibility. The accuracy of AK
needs acquisition is low as there is no direct interaction between documentation
users and ontology engineer, however, more AK needs can be acquired. The use
of a mailing list can prove to be very suitable for projects with many users and
distributed development. Bürger et al. provide evidence in [16] that suggests
that the use of e-mail is more efficient than face-to-face meetings.

The use of multiple acquisition techniques at the same time may be suitable in
some situations. For example, interviews and a mailing list may be used at the
same time for acquiring typical questions from a group of practitioners residing
in the same location as the ontology engineer and another group of practitioners
working elsewhere.

5.4.2 Contextual Factors in the Domain Analysis Phase

During domain analysis an ontology engineer identifies what AK is needed by
SA documentation users. If AK needs are overlooked documentation users will
have less support to retrieve this AK. The possibilities for acquiring AK needs
from users and the amount of AK needs in a software project influence how
much time and effort is required from the ontology engineer and AK users for
the identification of AK needs.

Large software projects typically have many (CF1) different (CF4) stakeholders
that are users of AK, such as software architects, engineers, testers, and prod-
uct managers. AK in large projects is often multidisciplinary in nature (CF6),
conveying views from many diverse stakeholders who are both users of AK and
experts in their respective domains (CF4).

We need to talk to a lot of AK users before all the AK needs for their roles (CF4)

69

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

are clear, especially in complex software projects (CF5). This becomes difficult
when AK users are not accessible (CF2) or committed (CF3) to cooperate [107]
[47].

In our approach typical questions are used to capture domain-specific AK needs
from many diverse users. Formulating questions requires relatively little effort
from users and acquiring questions can be scaled up in large projects. The ac-
cessibility and commitment of AK users is addressed by selecting one of several
techniques for acquiring typical questions listed in Table 5.1.

5.4.3 Contextual Factors in the Conceptualization and Eval-
uation Phase

After AK needs are identified, AK concepts can be derived from the AK needs
and modeled in an ontology. If the ontology is inaccurate or ambiguous it will
not support efficient and effective AK retrieval.

Conflicting interpretations of AK concepts are likely to occur with many users
[107] (CF1) with diverse roles (CF4) that work from different disciplines (CF6).
An ontology engineer might not have complete and thorough knowledge of all
AK concepts and their interpretation in a software product domain that is very
specific and complex (CF5). Reuse of a generic ontology is limited in such do-
mains. Domain experts can help with ontology modeling and evaluation, yet
these experts may be inaccessible (CF2) or uncommitted (CF3).

In our approach an ontology engineer uses coding techniques from Grounded
Theory to model AK concepts from typical questions. This coding process is
refined and iterated to improve the accuracy of ontology modeling without heavily
relying on domain experts. Typical questions are then evaluated by AK users to
verify that AK concepts in the ontology are accurate and interpreted consistently
between AK users. The accessibility and commitment of AK users is addressed by
selecting one of several techniques listed in Table 5.1 for acquiring evaluations.

5.4.4 Contextual Factors in the Maintenance Phase

The AK retrieved by users should remain accurate even when their AK needs
evolve (CF7) and AK concepts evolve (CF8). Therefore the ontology should
be updated accordingly [98]. Updating the ontology should be efficient 1) for
economic feasibility and 2) to prevent of any lag between the moment AK needs
and concepts change and this new AK can be retrieved by users [47].

70

5.4. CONTEXTUAL FACTORS IN ONTOLOGY ENGINEERING

Table 5.2: Influence of Contextual Factors in Ontology Engineering Phases

All Ontology Engineering Phases
Contextual Factors Influence
CF2: Accessibility of AK users
CF3: Commitment of AK users

Accurate acquisition of AK needs becomes
difficult when AK users are inaccessible or un-
committed. Ontology construction and eval-
uation needs involvement of committed AK
users.

Domain Analysis Phase
CF1: Number of AK users
CF4: Diversity of AK users
CF5: Product domain
complexity and specificness
CF6: domain multidisciplinarity

These CFs influence how many different AK
concepts have to be identified, suppporting
the AK needs of users in various roles, dis-
ciplines, and product domains.

Ontology Conceptualization and Evalualation Phase
CF1: Number of AK users
CF4: Diversity of AK users
CF5: Product domain
complexity and specificness
CF6: domain multidisciplinarity

Conflicting interpretations of AK concepts are
likely to occur when there are many diverse
AK users, each having their own jargon in
their domain and role. An ontology engineer
may not have thorough understanding of all
disciplines and product domain specific con-
cepts, and require assistance from domain ex-
perts.

Ontology Maintenance Phase
CF7: Shifting AK needs
CF8: Volatility of domain concepts

AK needs of users shift, e.g., between soft-
ware project phases and when domain con-
cepts change. Maintainance may be needed
to keep the ontology up to date with the AK
needs of its users.

AK needs shift and AK concepts can become deprecated in a software project
when architecture, design and development methods change, societal and organi-
zational changes impact the SA [9], new insights and solutions are found, project
phases progress, or when concepts from the product domain(s) evolve. This is
likely to happen in complex project domains (CF5) involving many (CF1) diverse
(CF4) users working in multiple disciplines (CF6) that evolve with time. In our
approach typical questions are re-acquired and compared to previously acquired
questions to detect shifting AK needs and AK concepts.

71

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

5.5 Case Study

In this exploratory case study [82] on the use of the ’typical question’ approach
we explore two questions:

• How do the contextual factors in this case study influence the application
of the ’typical question’ approach?

• How well does the ’typical question’ approach work in this case study to
construct a useful ontology for SA documentation?

We developed an ontology that was applied to SA documentation at Océ Tech-
nologies, an international leader in digital document management and a Canon
Group company. This SA documentation specifies the software for document
printing machines developed at Océ Technologies and is used in multiple projects
and product lines.

The documentation for which the ontology was built consists of 7 SA documents
with 79 pages in total and is a small yet representative subset of the available
types of documents in a project at Océ Technologies. This subset of documents
was selected because of timing constraints for the experiment reported in [30].

The products built at Océ Technologies evolve with market needs, which intro-
duces a high rate of change (CF8) in their domain. Their product teams deal
with software, firmware and specific hardware (CF5, CF6) and consist of diverse
documentation users (CF4) such as domain architects, product testers, workflow
architects, etc. Océ applies agile development in a product line environment. This
means that the architectural design and software project phases iterate rapidly
(CF7).

A software professional at Océ estimated that there are well over 50 users of
the SA documentation (CF1). Software projects typically take place in three
locations in Europe. However, our study was limited to documentation users in
one site (CF2). Even though documentation users were pressed for time, they
were committed to this research project (CF3).

5.5.1 Domain Analysis Phase (Step 1)

In order to work with the schedule and accessibility of the AK users at Océ
Technologies, we used a mailing list to acquire their AK needs. We asked SA
documentation users to send their typical questions about AK that they had
during their work activities. 7 documentation users, among which software engi-
neers, a software project manager and a software architect, provided 17 questions.

72

5.5. CASE STUDY

Snippet 5 below gives a subset of the acquired typical questions at Océ. Parts of
these questions are obfuscated for confidentiality reasons.

Snippet 5 - Subset of typical questions acquired at Océ

• “What is the rationale behind this requirement? (And whom can we ask?)”

• “Which subsystem is responsible for fixing the XX defaults based on the device
configuration?”

AK needs acquisition during domain analysis using a mailing list was time- and
cost-efficient. Because many users involved in this case study proved to be acces-
sible and committed the acquisition was, in retrospect, also relatively accurate
(see Table 5.1 for comparison).

5.5.2 Conceptualization and Evaluation Phase (Steps 2-5)

After acquisition of typical questions in the Océ case study we labeled and clas-
sified the AK concepts in these typical questions. Snippet 6 lists three typical
questions, two from Snippet 5, that we acquired. Labels (between square brack-
ets) show the classification of phrases and words after we applied the coding
mechanisms from Grounded Theory [93].

Snippet 6 - Coding of typical questions at Océ

• “What is the rationale [“Decision (class)”] behind [“depends on (relationship)”]
this requirement [“requirement (class)”]? (And who [“stakeholder (class)”] can
we ask?)”

• “Which subsystem [“subsystem (class)”] is responsible for fixing [“changed by
(relationship)”] the defaults based on the device [“Device (class)”] configuration
[“setting (class)”]?”

• “I changed the behavior [“behavior(class)”] of some interface method
[“method(class)”] after I had convinced myself that the method [“method (class)”]
was not used at all in other parts of the system and so the change would have
no [“change task (class)”] impact [“impacts (relationship)”]. However, at the
same time another team made functional enhancements [“change task (class)”]
that relied [“depends on (relationship)”] exactly on the *old* behavior [“behav-
ior(class)”] of that method [“method(class)”]. Could I have known that a new
subsystem [“subsystem(class)”] dependency [“depends on (relationship)”] on this

73

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

method [“method (class)”] was upcoming [“change task (class)”] or was it just
bad luck that these actions [“change task (class)”] had crossed each other?”

During coding we found that many words and phrases in the typical questions
could almost directly be translated into relationships and classes, e.g., similar to
Figure 5.3. We recorded the rationale for our actions during the coding steps in a
document (named ’field notes’ or ’memos’ in Grounded Theory). We instantiated
the classified AK concepts in typical questions, of which two are shown in Snippet
7.

Snippet 7 - Typical questions with instantiated AK concepts at Océ

• “What decision depends on requirement ‘REQ. 23 ’?”

• “Which subsystem changes setting ‘external indication light color ’?”

Feedback interview sessions were held with a small group of committed and acces-
sible documentation users in diverse roles. These documentation users evaluated
the classified and interrelated AK concepts and resolved conflicting interpreta-
tions. A software designer and software engineer each evaluated 7 questions with
instantiated AK concepts on their accuracy as well as their relevancy and repre-
sentativeness for the roles in the project. A software architect provided feedback
on the interpretations of several AK concepts. These interviewees did not partake
in providing the typical questions. Below is a summary of how a conflict between
the interpretations of ‘behavior’ and ‘feature’ was resolved:

The AK concepts ‘behavior’ and ‘feature’ are on different abstraction levels and
used by users in different roles: ‘Feature’ is similar in meaning to ‘behavior’, but
is a term adopted by users that work from a business perspective.

‘behavior’ is adopted as the primary representation of the AK concepts in the
ontology.

Figure 4.1 depicts an ontology partially built using the coded and evaluated
AK concepts from Snippets 6 and 7. This ontology was used for the industrial
experiment reported in Chapter 6. Note that we only included AK concepts in
this ontology that could later be annotated in the subset of documents used in
the experiment. We did not include the other identified concepts such as ‘Change
task’, ‘Method’, ‘Device’, and ‘Stakeholder’.

We compared the identified AK concepts and relationships to those in the Light-

74

5.5. CASE STUDY

weight Software Ontology proposed by Tang et al. in [104]. The Lightweight
Software Ontology offers a starting point or a template to help ontology engineers
capture AK that is commonly used. The AK concepts and relationships we
identified largely coincided with those in the Lightweight Software Ontology, i.e.,
the ’typical question’ approach was also able to identify commonly used domain-
independent AK.

We adopted concepts ’Wikipage’ and ’Diagram’, derived from concept ’DC’ (Dub-
lin Core) in the Lightweight Software Ontology, to enable ontology-based docu-
mentation in a semantic wiki tool. The steps taken in the construction of the
ontology in Figure 4.1 are part of a middle-out approach (see Section 5.2.2), com-
bining a top-down predefined ontology (i.e. the Lightweight Software Ontology)
and bottom-up acquisition of domain specific AK needs using the ’typical ques-
tion’ approach. 11 semantic relationships and 4 classes, appended with “(Océ)”,
in the ontology are Océ domain specific. Concepts ‘Behavior’ and ‘Setting’ in
this ontology have specific semantics in the Océ product-domain.

The ontology was used to store the content of the file-based documentation subset
in the semantic wiki as wikipages. The ontology classes and relationships were
instantiated by semantic annotation of AK in the SA documentation content in
wikipages.

The semantic annotation of AK concepts, i.e. the documentation content itself,
described above is not part of our ’typical question’ approach. We describe this
to illustrate how the constructed ontology was used as part of an ontology-based
documentation approach.

5.5.3 Ontology Maintenance Phase (Step 6)

In the Océ case study we observed that the AK needs of users shifted between
software project phases. High-level AK about product lines, changing indepen-
dent of individual product projects, is present in the documentation and can
introduce shifts in AK needs. Moreover, much product research and innovation
takes place in the R&D department of Océ, e.g., on hardware and mechanical
components. This introduces volatility of AK concepts.

Several months after previous steps were executed and ontology-based SA doc-
umentation was implemented, we asked a diverse group of documentation users
to record their typical questions about AK in a daily log (technique from Table
5.1). We decided to use daily logs to acquire typical questions because users were
still quite accessible and committed and because it gave a balanced trade-off be-
tween accuracy and efficiency of AK needs acquisition. We acquired 39 typical

75

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

questions from 9 documentation users, including 5 software engineers, 2 product
testers, 1 software architect and 1 project manager.

We collected daily logs during the build and integration phases of the project
in which ontology-based SA documentation was implemented. New AK needs
were acquired compared to the known AK needs acquired at an earlier project
phase. The daily logs contained typical questions about software builds, re-
leases, planning, product-lines, control flow, physical products, and automated
tests. Considerably fewer typical questions about change impact were acquired
as compared to the typical questions initially collected. Four examples of typical
questions containing new AK needs are given below in Snippet 8.

Snippet 8 - Newly acquired typical questions at Océ

• “I need to find AK on build XX from a different domain team (but for the same
product).”

• “Is setting XX for device YY useful for product ZZ in product line?”

• “How is development tool XX used in offshore location YY?”

• “Is state XX persistent? A test case fails on behavior YY.”

5.5.4 Lessons Learned

The case study gave us insight in how contextual factors influenced the appli-
cation of the ’typical question’ approach in the Océ project and whether the
approach could be used to construct a useful ontology.

• How do the contextual factors in this case study influence the application
of the ’typical question’ approach?

The ’typical question’ approach was used to acquire AK needs for many diverse
AK users (CF1 and CF4) in steps 1 and 6 of the approach. The roles of these
AK users include software engineers, architects, project managagers, and product
testers. The time and effort spent by the AK users was acceptable for them as
they had spent around 5-10 minutes to type an email with typical questions or a
few minutes each day to record a typical question in their daily log.

AK users were not only able to phrase their own typical questions in steps 1
and 6, but also evaluate the questions of other AK users during steps 4 and 5 of
the approach. Part of the typical questions acquired in the case study were not
only about AK but also about detailed design and implementation details. We

76

5.5. CASE STUDY

observed that the amount of AK needed by AK users is influenced by their role
(CF4) and the software project phase in which typical questions are acquired.

In the case study the researchers had good access to AK users who were quick to
help. AK users provided typical questions, clarified AK needs, and evaluated the
ontology. This commitment also impacted the time and effort spent by AK users
to phrase and rephrase their typical questions, making sure they were relevant,
and consistently record them in a daily log. Accessibility (CF2) and commit-
ment (CF3) of AK users are regarded as preconditions for the ’typical question’
approach to work. However, our evaluation (see Table 5.1) suggests that our ap-
proach can address low accessibility by using an acquisition technique involving
email or mailing lists. A case study in a project where SA documentation users
have low accessibility would give insight in this, e.g., in distributed development.

The diversity of AK users in terms of their roles (CF4) and disciplines (CF6)
was relevant and necessary for understanding and aligning diverse AK concepts.
Examples of this was the interpretation of ’setting’ between the tester and devel-
oper role and the interpretation of ’feature’ between users from engineering and
business disciplines. These conflicting interpretations were detected and resolved
using instantiated typical questions in steps 4 and 5 of the approach. As such,
it appears advantageous to have stakeholders in different roles to participate in
evaluation.

We found that AK concepts that are specific to the product domain (CF5) do not
always show up in acquired typical questions. The reason is that we asked the AK
users to provide their typical questions about architecture, and consequently the
users did not actively ask questions about background knowledge on the product
domain. Part of the product domain specific AK was implicit or omitted in the
typical questions. Therefore this knowledge was not explicit in the constructed
AK ontology.

Several months after the initial ontology was constructed, the approach was used
again to detect shifting AK needs in the same project (CF7). We did observe
shifting AK needs, but the meaning of the classes and relationships remained
the same (CF8). The typical questions that we acquired from users in the initial
execution of step 1 in the approach did not cover the AK needed by users for
their later tasks. This means that if user tasks change frequently, more ontology
maintenance is needed.

• How well does the ’typical question’ approach work in this case study to
construct a useful ontology for SA documentation?

In a questionnaire we asked five Océ professionals that are users of AK to evaluate
the ontology. This evaluation took place after they used the ontology to retrieve

77

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

AK from SA documentation in the experiment reported in Chapter 6. Table 6.5
reports questionnaire results. We asked the five AK users whether the ontology
is a correct representation of reality. Three AK users answered “yes” and two
AK users answered “to a certain extent”. These two AK users remarked that the
ontology should include more printing machine domain knowledge.

Not all of the printing machine domain knowledge that was identified was included
in the evaluated ontology depicted in Figure 4.1. This is because the evaluated
ontology was built for annotating a subset of SA documentation. AK concepts
that were not described in this subset of SA documentation were not included in
the evaluated ontology. Moreover, we asked AK users to provide typical questions
about the architecture, not about the product domain. As a result we cannot
claim that our approach is comprehensive for building a full ontology for all
possible AK needs.

All five Océ professionals confirmed in the questionnaire that they found it prac-
tical to work with the ontology. Moreover, all five Océ professionals found the
ontology helpful to reason about what AK is in SA documentation, and what AK
should be in the SA documentation. This gives us confidence that the ’typical
question’ approach worked well to construct a useful ontology in this case study.

The ontology constructed in the case study was used together with the ArchiMind
semantic wiki to construct ontology-based SA documentation for the experiment
reported in Chapter 6. 26 Océ professionals used this ontology-based SA docu-
mentation to retrieve AK and their efficiency and effectiveness was significantly
higher than when using file-based SA documentation to retrieve the same AK.

5.6 Related Work

In this section we discuss how aspects of the ’typical question’ approach for
ontology engineering relate to aspects of other ontology engineering approaches
and how they differ.

Jansen et al. describe how they construct an ontology from existing SA docu-
mentation in [51]. Researchers and a software architect identified and annotated
classes of AK in documentation text, to elicit the AK needs in a documentation
use case about architectural reviews. Existing SA documentation and the use
case(s) may however not convey AK needs of all documentation users. Moreover,
annotating researchers or architects may not know the interpretation of AK con-
cepts and the AK needs of all documentation users by heart.

78

5.6. RELATED WORK

Questions can be used to classify design artifacts in the Zachman framework for
enterprise architecture [121]. Typical questions gathered in our approach are
mostly asked from the owner, designer, and builder perspective and from all
abstractions (what, how, where, who, when, and why) described in the Zachman
framework. Zachman argues from empirical observation that design artifacts
(e.g., product descriptions and engineering documentation) can be classified by
the users of these design artifacts. In our approach the users of AK evaluate
classifications of AK concepts that are used to describe design artifacts.

In their TOVE enterprise modeling approach [43] Grüninger and Fox make use
of ‘competency questions’ for ontology evaluation. Competency questions are
considered ontology requirements and are used to evaluate an ontology based
on its ability to answer the competency questions [43]. The notion of typical
questions is similar to that of competency questions. Competency questions are
however not refined and evaluated by users in order to construct an ontology
(introduce ontological commitments), as is done in our approach with typical
questions.

The On-To-Knowledge methodology [97] developed by Sure et al. uses com-
petency questions to add relations to an ontology. In [110] Uschold and King
however found competency questions to be too specific to guide early ontology
development. Moreover, formalizing competency questions in first-order logic re-
quires different skills from an ontology engineer than those required in the ’typical
question’ approach.

Acquisition of competency questions in these approaches is different to the acqui-
sition of typical questions in our approach. For example, in the UPON method-
ology, proposed by Nicola et al. in [75], competency questions are gathered using
interviews with domain experts, brainstorms and document analysis, whereas di-
rect acquisition of typical questions from all users is proposed in our approach.
Moreover, optimization of the efficiency and accuracy of AK needs acquisition
and evaluation is proposed in our approach. This optimization is achieved by
selecting different techniques for acquiring typical questions based on the com-
mitment and accessibility of users.

The DILIGENT methodology, described by Pinto et al. in [79], focuses on dis-
tributed ontology development involving different stakeholders, possibly in sep-
arate locations, with varying needs and purposes. Ontology users can change
an initial shared domain ontology in their local environment according to their
needs. These users can then provide arguments for change requests to a central
board which makes decisions and judgments on modeling of user needs and con-
flicting requirements. Similarly users give feedback on ontology concepts in our
approach. Our approach however uses typical questions in the evaluation process.

79

CHAPTER 5. AN EXPLORATORY STUDY ON ONTOLOGY
ENGINEERING FOR ARCHITECTURE DOCUMENTATION

Moreover, AK users in our approach not only evaluate AK concepts needed by
themselves but also those needed by other AK users.

Kotis et al. describe their HCOME methodology in [59] in which users collab-
orate to solve conflicting interpretations of concepts in an ontology. HCOME
allows ontology users to propose an updated ontology by themselves. This re-
lies on different skills of ontology users as compared to our approach in which
SA documentation users need the skill to sharply phrase their typical questions
about AK.

5.7 Conclusions and Future Work

The use of ontology-based SA documentation can improve AK descriptions and
retrieval. The implementation of ontology-based SA documentation requires ac-
quisition and ontology modeling of the AK needed by SA documentation users.
In software projects in industry it is important for organizations and individual
users that this is done efficiently and accurately. For industry domains that are
large, complex, and have many diverse users, this becomes challenging.

We devised a ’typical question’ approach to ontology construction for SA docu-
mentation in the context of a large and complex software project. In this approach
typical questions are used to acquire a tangible representation of AK needs from
SA documentation users. AK concepts are identified from the typical questions
and modeled in an ontology using coding techniques from Grounded Theory.
Typical questions are also used for ontology evaluation and to identify conflicting
interpretations of AK concepts between AK users working from different roles
and disciplines.

We described contextual factors that influence the construction of ontologies for
SA documentation in software projects, e.g., the specificness of the product do-
main and the accessibility of AK users. We found that the ’typical question’
approach could be applied to build an ontology for many diverse AK users in the
context of a large and complex software project. This is reasonable since: 1) the
’typical question’ approach is based on the involvement of different roles 2) re-
solves conflicting interpretations between roles and 3) supports different forms of
acquisition, e.g., interviews and emails, to handle different levels of commitment
and availability. AK users evaluating the ontology all confirmed that the ontol-
ogy was practical to work with and most AK users confirmed it was a correct
representation of reality.

Our approach caters for changes in AK needs, however it cannot prevent ontology
maintenance as AK users mostly provide AK needs for their current tasks. The

80

5.7. CONCLUSIONS AND FUTURE WORK

frequency of such maintenance depends on the frequency with which user tasks
change.

These findings are based on a single case study of SA documentation for software-
intensive products. Our exploratory case study was a first step to test if our ’typ-
ical question’ approach is suitable for gathering enough explicit product-specific
domain knowledge to produce an accurate AK ontology. We plan to do additional
case studies, to generalizing our findings beyond one company and investigate
if the ’typical question’ approach can be applied by industry professionals. A
comparative study of the use of other ontology engineering approaches, possibly
combined with ours, to gather AK needed for both current and future tasks of
AK users will be future work.

81

6
How Organisation of Architecture

Documentation Influences Knowledge
Retrieval

In this chapter we report case studies in two companies to investigate how the use
of file-based and ontology-based documentation influences AK retrieval (RQ4). A
common approach to SA documentation in industry projects is the use of file-
based documents. This approach offers a single-dimensional arrangement of the
AK. AK retrieval from file-based documentation is efficient if the organisation
of knowledge supports the needs of the readers; otherwise it can be difficult or
impossible to retrieve the knowledge. The ontology-based approach offers a multi-
dimensional organisation of AK by means of a software ontology and semantic
wiki, whereas file-based documentation typically uses hierarchical organisation by
directory structure and table of content. We conducted case studies in two com-
panies to study the efficiency and effectiveness of retrieving AK from the different
organisations of AK. We found that the use of better AK organisation correlates
with the efficiency and effectiveness of AK retrieval. Professionals who used the
AK organisation found this beneficial.

In software industry, it is common practice to capture AK using file-based doc-
uments. This documentation approach has not changed for decades, however, it
has various issues when retrieving AK:

• The AK that is searched for is often complex, covering different parts of a
system and different stages of development. The AK needed to answer a
question is often not found in one part of a document.

• The way architects organise the contents of a document is reflected in its
table of contents, which provides an index on the AK. If a search for AK

83

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

is not supported by this table of contents, then the AK may not be easily
found.

• If structuring of document content is not done properly, AK can become re-
dundant and scattered across architecture views, sections, and documents.
This is hard to prevent when there are many stakeholders with different
AK needs.

• Cross-references between different sections and documents, e.g., in a trace-
ability matrix, can help searching for scattered AK, however, they are hard
to maintain when AK evolves.

These issues occur because file-based documents have a linear organisation of
contents. This organisation limits the support for indexing contents. It results
in documents that provide a single-dimensional arrangement of AK and that
arrangement may not fit the needs of all AK users. Documentation that is not
fitting for its users is not cost-effective [21] [31], yet documentation in industry is
often ’one-size-fits-all’ and does not serve specific users and their tasks well [80].

In Chapter 4 we described an ontology-based approach for SA documentation.
In this chapter we report on two controlled industry experiments in which the
ontology-based approach is compared to a file-based approach when software
professionals retrieve documented AK. We measured the time-efficiency and ef-
fectiveness (in terms of precision and recall) of software professionals answering
questions representative of their daily work.

Through the experiments we investigated how different organisations of AK in
file-based and ontology-based documentation affect the efficiency and effective-
ness of AK retrieval. Both documentation approaches are evaluated and com-
pared.

We investigated the reasons why software professionals retrieved AK efficiently
and effectively. We identified how the file-based and ontology-based AK organ-
isation supported software professionals when they searched for AK. Explicit
information in the AK organisations provided clues about the navigation path to
relevant types of AK and relationships.

We quantified the usage of supporting AK organisation by analysing the individ-
ual search actions of the software professionals. We found that the use of AK
organisation that supports a question has a medium to strong correlation with
the efficiency and effectiveness of answering that question. Use of supporting AK
organisation removed search uncertainty about the location and completeness of
answers. This means that AK retrieval from SA documentation can be improved
by providing more AK organisation that supports the questions of document
users.

84

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

Ontology-based documentation can improve AK retrieval by providing a more
fitting AK organisation with more diverse possibilities to use the fitting AK
organisation via multiple paths, however, it also incurs costs. These costs may
not outweigh its benefits in certain projects. We estimated the costs, benefits,
and return on investment of adopting ontology-based documentation in the two
studied industry projects.

This work makes the following contributions:

• Compare AK retrieval from ontology-based and file-based AK organisation
in two industrial experiments.

• Identify how and why AK organisation results in efficient and effective AK
retrieval.

Section 6.1 details on the experiment setup and findings. Section 6.2 describes
how AK retrieval is influenced by AK organisation. Section 6.3 reports a qualita-
tive evaluation of the documentation approaches and experiment. Section 6.4 re-
ports a cost-benefit analysis of adopting ontology-based documentation. Threats
to validity are discussed in Section 6.5 and implications of this work are described
in Section 6.6. Related work is discussed in Section 6.7. Section 6.8 reports our
conclusions and future work.

6.1 AK Retrieval Efficiency and Effectiveness

6.1.1 Experiment Goal

We conjecture that the organisation of AK in file-based documentation causes
certain issues with AK retrieval and that the AK organisation in an ontology-
based documentation approach does not cause these issues. Given these two
documentation approaches, we test their efficiency and effectiveness when re-
trieving AK. This allows us to investigate how the file-based and ontology-based
AK organisation affects the efficiency and effectiveness of retrieving documented
AK. The experimental goals are:

• (A) evaluate the AK retrieval efficiency of the file-based approach and
the ontology-based approach to SA documentation.

• (B) evaluate the AK retrieval effectiveness of the file-based approach and
the ontology-based approach to SA documentation.

The experiment was conducted in a software project at the R&D department of
Océ technologies in the Netherlands and in a software project at LaiAn in China.

85

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Table 6.1: Variations between experiment domains

Items Océ LaiAn

Development process

Agile development in
which business results
delivery takes precedence
over excessive documen-
tation.

Waterfall development
that stresses documenta-
tion in each development
phase.

Scope of studied project and
software documents

Software used in a series
of document printing ma-
chines

Web-based information
system for petition case
administration of local
government

Number of experiment doc-
ument users 50∼75 22∼25

Language of experiment
documents English Chinese

Number of experiment doc-
uments 8 1

Total size of experiment
documents

79 pages, 3 diagrams,
1,794 paragraphs, and
3,183 lines, 13,962 words

46 pages, 20 diagrams, 348
paragraphs, 645 lines, and
8,538 words

We described the documents, development methodology, and recruitement of par-
ticipants in the Océ experiment domain in more detail in Section 2.2.1. LaiAn is a
software company that provides information system development and integration
services for small and medium enterprises and local government. Table 6.1 details
the variations between the experiment domains and the SA documentation used
in the experiment.

A waterfall development approach is used at LaiAn, which requires the use of
detailled upfront design documentation. Many parts of the information systems
built at LaiAn are reusable in subsequent projects, and this reuse requires AK
retrieval from SA documentation as well.

6.1.2 Experiment Participants

Table 2.1 in Section 2.2.1 gives the demographics of the experiment participants
at Océ. Table 6.2 gives the demographics of the experiment participants at
LaiAn. We asked technical employees that use the experiment documentation
to participate and most agreed to this. At LaiAn, the project roles are roughly
defined and assigned to individuals. A software engineer at LaiAn may also take
on the role of deployment, test, and operations engineer; an architect may take

86

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

on the role of requirements engineer and designer; and a project manager may
take on the role of delivery and quality manager.

Table 6.2: Demographics of Participants at LaiAn

Number of Primary Average Average Average
participants role of years in role years years working

participants at LaiAn in role at LaiAn
15 Software engineer 1.87 5.47 1.87
5 Software architect 4.50 7.50 4.50
2 Software project manager 1.50 1.80 1.90

6.1.3 Experiment Materials

The materials used at both Océ and LaiAn consist, per experiment, of an SA
documentation corpus, an ontology, and questions about the AK in the docu-
mentation corpus that are to be answered by experiment participants. Figure 6.1
gives an illustrated overview of how the experiment materials were constructed
and used in the experiment.

File-based documents from Océ and LaiAn were used as input to construct
ontology-based documentation. Software professionals at Océ provided exam-
ples of the types of AK concepts and relationships in the Océ domain, which
were included in the Océ ontology. The experiment questions were constructed
from documentation content by researchers. These questions were evaluated,
and some rephrased or rejected, in a pilot study by software professionals. The
software professionals in the pilot study did not participate in the experiment.

File-based Documentation

The documents used in the Océ experiment were previously described in Section
2.2.1. The LaiAn experiment uses one file-based document:

• One Software Architecture Document (SAD) of 46 pages. This single SAD
contains all system goals, detailed requirements, system design, architec-
ture design, design principles, subsystem, and components in a project at
LaiAn. The document is mainly composed of text descriptions and UML
activity and box-and-line diagrams. The document has an implicit view-
based organisation. Views are not formally specified but the document
sections and contents correspond to a logical, process, and use case view.

87

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Océ

experiment
Océ software

documentation

Océ

specific

ontology

File-based

documentation

provide

Océ software

professionals

Lightweight

Software Ontology

Ontology-based

documentation

(in semantic wiki)

use

Sysref

SAD

SBD

Sysref

SAD

SBD

LaiAn

experiment

LaiAn software

documentation

File-based

documentation

evaluate

Lightweight

Software Ontology

Experiment questions

use use

LaiAn software

professionals

answer

use

answer

SAD

SAD

Legend

action
Input/

source

Output/

result

Software professionals

Output/

target

Ontology-based

documentation

(in semantic wiki)

Experiment questions

Océ concepts and

relationship types

evaluate

Figure 6.1: Construction and use of materials in experiments.

88

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

All participants used Microsoft Word for reading and keyword searching in the
file-based experiment documents. Océ participants used Windows file explorer
for navigating directories, keyword searching across documentation, and opening
documents in the experiment. In addition to the searchable text that speci-
fies the architectural design, Océ participants used MagicDraw (a UML mod-
elling tool) for viewing, tracing, and keyword searching in the architectural di-
agrams, whereas LaiAn professionals viewed the architectural diagrams as em-
bedded static pictures in the file-based document. Use of the above tools is
representative of the actual practice of Océ and LaiAn professionals.

Océ Ontology

The lightweight software ontology from [104] was directly used in the LaiAn ex-
periment. We extended the lightweight software ontology to include Océ concepts
and relationships types. We used the ontology engineering approach described in
Chapter 5 for the ontology extension.

To do so, we asked Océ professionals to provide examples of the AK concepts and
relationships they needed to retrieve from file-based architecture documentation
in their daily work. Two examples of these AK needs are:

• "What is the rationale behind this requirement? (And whom can we ask?)"

• "Which subsystem is responsible for fixing the XX defaults based on the
device configuration?"

We collected AK needs from 7 Océ professionals, among which software engineers,
a software architect, and software project manager. These professionals work in
multiple projects and printer product-lines, and the Océ ontology (see Figure 4.1)
can be used as a general-purpose ontology in multiple projects.

From the information given by the Océ professionals we identified AK concepts
and relationship types that were added to the lightweight ontology. We did
not include identified AK concepts and relationship types that were not also
recorded in the file-based documentation subset used in the Océ experiment. For
example, AK concepts ’testcase’, ’interface method’, ’action’, ’stakeholder ’, and
their associated relationships, were not included. The accuracy and effort to
construct the ontology are described in Chapter 5.

89

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Document Annotation

The Océ and LaiAn documents were entered in separate installations of Archi-
Mind. We identified and annotated 214 AK instances using the Océ ontology
presented in Figure 4.1, namely;

• 27 wikipages and 3 diagrams

• 45 functional and 0 non-functional requirements1

• 22 decisions and 3 alternative decisions

• 19 subsystems, 66 interfaces, and 15 components

• 8 settings and 6 behaviours

We identified and annotated 141 AK instances in the LaiAn documents using the
lightweight ontology [104];

• 1 wikipage2 and 20 diagrams

• 65 functional and 2 non-functional requirements. 1 system goal was anno-
tated as a requirement.

• 7 decisions

• 21 components, 7 subsystems, and 18 architecture elements other than sub-
systems and components.

The annotations were verified by two software professionals at Océ and one soft-
ware professional at LaiAn during a pilot study. We asked them whether specific
AK instances were correctly classified (corresponding to an ontology class) and
correctly interrelated by semantic relationships such as “requirement X is realized
by component Y ” and “decision X is about subsystem Y ”.

After annotation, the ontology-based documentation contained the same AK as
the file-based documentation. An ontology does provide extra information to
organise AK. We want to test if this AK organisation helps professionals to
retrieve AK.

1Two non-functional requirements, performance and security, are explicitly and compre-
hensively described in the reference architecture documents, but not in the subset of these
documents that was used in the Océ experiment. Other non-functional requirements are ex-
plicit in company-wide technical standards, and satisfied via the mechanisms, behaviour, and
functional requirements specified in the reference architecture documents.

2Document content at LaiAn was stored as a property of the AK instances that this con-
tent described. This one wikipage provides an integrated overview of the AK instances using
semantic annotations. As such, the use of wikipages in the LaiAn experiment is different from
the Océ experiment.

90

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

Experiment Questions

Experiment questions were constructed at Océ and LaiAn from the content of
experiment documentation. Researchers proposed experiment questions which
were evaluated, and some rephrased or rejected, by two Océ professionals and
one LaiAn professional in a pilot study. The experiment questions were con-
structed and evaluated in the pilot study based on four selection criteria that
aim for a fair comparison between file-based documentation and ontology-based
documentation. These selection criteria also ensure that we measure retrieval
of documented AK, that is retrieval of AK which is explicitly present in the
documentation, as opposed to retrieval of AK using memory, colleagues, specific
expertise, other sources, or qualitative evaluation or understanding of AK. The
selection criteria are:

1) The question is representative of the questions that documentation users
ask during their job.

Criterion 1 is evaluated by the pilot participants to ascertain that the experiment
questions are not ’artificial’ and represent questions that professionals normally
try to answer from documentation. Pilot study participants also ascertained that
proposed questions were relevant for the tasks of Océ and LaiAn professionals in
different software roles.

2) The answers can be found using the available AK and AK organisation in
the documentation.

Criterion 2 is used to ensure that questions are supported by the available AK or-
ganisation in the experiment. For example, one of the selected questions is about
settings and behaviour, which can be easily answered using the AK organisation
in a file-based document about settings and less easily using another document
about behaviour. In ontology-based documentation the classes ’Behaviour ’ and
’Setting’ can be used to find answers, however, only one semantic relationship
between these classes is defined, which makes it harder to find answers when
starting to search from class ’Behaviour ’.

Criterion 2 is also used to ensure that the answers can be quantitatively assessed,
i.e., that evaluators do not have to subjectively judge whether debatable answers
to an open-ended question are either correct or incorrect. Because the informa-
tion required to answer a question is available in documentation, the correctness
of answers is not open for debate and subject to different interpretations. This
criterion prevents that correct answers can only be found by participants with
specific background knowledge that is not recorded in documentation. For exam-
ple, answering a question about architectural trade-offs may require background
knowledge that not all testers and software engineers have.

91

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Pilot study participants answered the proposed experiment questions and this
ascertained that answers could be found using the available AK and AK organ-
isation. The pilot participants also ascertained that answers were not open for
debate or different interpretations, and could be quantitatively assessed.

3) The description of the AK that has to be found is consistent with similar
descriptions of AK in the documentation.

Criterion 3 is used to ensure that the AK that has to be found does not have
an atypical description and is recognizable for participants. Because the pilot
participants had to find answers, they could ascertain whether the description of
the answer was normal or atypical. For example, a pilot participant commented
that it was normal that the answer to Océ question 1A has two descriptions in
two documents.

4) The question has a similar interpretation between different participants.

We ascertained that software professionals had a similar interpretation of the
proposed questions based on the comments, search actions, and answers of the
pilot participants.

Based on the feedback of the pilot participants we replaced or rephrased the
initially proposed experiment questions. For example, the proposed experiment
question "Based on which requirements has decision XX been made?" has the
following evaluation by a pilot participant: "Answer [to this question] is not
clear in documentation and open for discussion. Question is relevant though.".
We subsequently rejected this experiment question because it violated selection
criteria 2, and we proposed a different question.

At Océ 13 experiment questions were proposed of which 6 were rejected and 3
were rephrased based on the evaluation by the two pilot participants. At LaiAn
8 experiment questions were proposed of which 4 questions were rejected in the
pilot study. The following questions were used in the end:

Océ questions

Seven questions were accepted in the Océ experiment. The questions have been
obfuscated for non-disclosure reasons: ‘XX’, ‘YY’, ‘ZZ’, and ‘QQ’ replace an
actual software entity or concept.

1A: Which settings have an impact on behaviour “XX”?

1B: Which settings have an impact on behaviour “YY”?

2: Which requirements for behaviour “ZZ” should be satisfied (realized) by com-
ponent “XX”?

92

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

3A: Which decisions have been made about component “YY”?

3B: Which decisions have been made on the configuration of behaviour “XX”,
“YY”, “ZZ”, and “QQ”?

4A: Which subsystem is interface “XX” part of?

4B: Which other interfaces are offered by this subsystem?

LaiAn questions

For the LaiAn experiment we used 4 questions.

1: Which requirements are realized by architecture design element “XX”?

2: Which requirements are related to requirement “YY”?

3: Which requirements does decision “ZZ” depend on?

4: Which architecture design elements are caused by decision “QQ”?

“Architecture design element” refers to an implementable software artifact, e.g.,
a component or subsystem, in the LaiAn documentation.

The type of experiment questions proposed at LaiAn is similar to the type of
questions at Océ to align the two experiments. The experiment questions in-
volve relationships between AK and this is representative of the type of complex
questions that Océ and LaiAn professionals ask in their daily job.

These types of questions are asked in multiple scenarios of SA documentation
usage. For example, all questions can be asked during architecture refactoring
and change impact analysis. Océ question 2 and LaiAn questions 1, 2, and 3 can
be asked during architecture trade-off analysis and requirements verification.

6.1.4 Experiment Hypothesis

We formulate the following alternative hypotheses for experimental goal A and
B presented in Section 6.1.1;

H1A = The use of the ontology-based approach for answering experiment ques-
tions results in better time-efficiency than the use of the file-based approach.

H1B = The use of the ontology-based approach for answering experiment ques-
tions results in higher effectiveness than the use of the file-based approach.

The null hypotheses state that there is no difference in efficiency and effectiveness
between the approaches.

93

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Two independent variables (or ‘predictor variables’) are used in the experiment,
namely the file-based and the ontology-based approach to SA documentation.
Two dependent variables (or ‘response variables’) are used in the experiment.
Time is used as a measure of efficiency. The harmonic mean of precision and
recall, the F1 score, introduced by van Rijsbergen in [114], is used for measuring
effectiveness:

F1score = 2 ∗ Precision ∗ Recall

Precision + Recall

where recall is the proportion of relevant items retrieved from the total set of
relevant items in a system and precision is the proportion of retrieved items that
is relevant in a result set. The relevancy of items, or ‘ground truth’, was verified
with two Océ professionals and one LaiAn professional who did not participate in
the experiment. Recall represents the completeness of AK retrieval and precision
represents the correctness of AK retrieval. The use of precision and recall to
measure search effectiveness is widely accepted in information retrieval research
[88].

6.1.5 Experiment Procedure

We asked experiment participants to answer each of the questions using either the
ontology-based approach or the file-based approach. We designed our experiment
to be executed in two versions. Consecutive participants in the experiment were
alternated between the two versions.

Both experiment versions 1 and 2 included an introduction and procedure (or
‘protocol’) at the start and a questionnaire at the end. Version 1 starts with an
ArchiMind tutorial, questions 1 and 2 to be answered with the ontology-based
approach, and questions 3 and 4 to be answered with the file-based approach.
Version 2 starts with questions 1 and 2 to be answered with the file-based ap-
proach, the ArchiMind tutorial, and questions 3 and 4 to be answered with the
ontology-based approach.

The experiment was designed to minimize biases when assigning participants to a
treatment group and a control group. Each participant used both documentation
approaches to retrieve AK and answer questions in the experiment. This design
minimizes the chance that participants’ familiarity and preference for either ap-
proach could interfere with the results.

We chose to execute the experiment with each participant individually in a meet-
ing room to avoid distraction for them and entropy in the experiment. We in-
formed participants that their individual results were confidential to anyone other
than the experiment supervisors.

94

6.1. AK RETRIEVAL EFFICIENCY AND EFFECTIVENESS

Océ participants were asked to think aloud, verbally state their answers, and
their satisfaction with answers. LaiAn participants wrote down answers instead
of verbalizing them. We asked all participants to stop searching when they were
satisfied with the time spent on an answer and its perceived correctness and
completeness. Participants were instructed that this satisfaction and the way
they searched should reflect their daily practice.

6.1.6 Experiment Test Results

Using the Shapiro-Wilk and Kolmogorov-Smirnov tests, we found that the ex-
periment measurements are not normally distributed. Therefore we applied the
non-parametric Mann-Whitney-Wilcoxon test. Table 6.3 reports measurements
and results3 of one-tailed tests.

Knowledge Retrieval Efficiency

The difference in time efficiency between the two approaches was statistically sig-
nificant at the p=0.05 level for all Océ experiment questions, except for question
4A. This is shown in Table 6.3, in column ‘p-value test results’, for rows with
’Seconds’ in column ’measure’. Consequently, we reject the null hypothesis H0A
and accept the alternative hypothesis H1A for all Océ questions except question
4A. Question 4A was very quickly answered with the file-based approach because
AK about subsystems and interfaces is easily found in the AK organisation of
multiple documents.

The difference in time efficiency between the two approaches was statistically
significant for all LaiAn experiment questions, except for question 1, as shown
in Table 6.3. Consequently, we reject the null hypothesis H0A and accept the
alternative hypothesis H1A for all questions except question 1. The failure to
reject the null hypothesis for LaiAn question 1 is explained by the short duration
(5 minutes) of the ArchiMind tutorial given to participants. We observed that
LaiAn participants took more time to use ArchiMind’s features during the first
question compared to subsequent questions.

3The Mann-Whitney-Wilcoxon test was also applied on the same data in [30], however, the
test in this paper was corrected for the many ties in F1 score measurements. Measurements
for LaiAn question 1, answered by participant 1, were excluded as we unintentionally asked a
slightly different question.

95

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Table 6.3: Time-Efficiency (Seconds), Effectiveness (F1 Score), and Statistical
Test Results in Océ and LaiAn Experiment

Ques-
tions
in Océ
experi-
ment

Mea-
sure

Average
ontol-
ogy-
based

Average
file-
based

Differ-
ence

p-value
test
results

Effect
size r

1A Seconds
F1 score

161
0.97

394
0.96

233
0.01

0.00914
0.28955

0.46
0.11

1B Seconds
F1 score

157
0.85

212
0.65

55
0.20

0.03232
0.02083

0.36
0.40

2 Seconds
F1 score

229
0.95

382
0.70

153
0.25

0.00598
0.03672

0.49
0.35

3A Seconds
F1 score

148
1.00

401
0.47

253
0.53

0.00005
0.00050

0.76
0.65

3B Seconds
F1 score

197
0.92

374
0.59

178
0.33

0.00135
0.01694

0.59
0.42

4A Seconds
F1 score

73
1.00

78
0.74

5
0.26

0.44898
0.01673

0.03
0.42

4B Seconds
F1 score

40
1.00

64
0.68

24
0.32

0.01557
0.00762

0.42
0.48

All
ques-
tions

Seconds
F1 score

144
0.96

272
0.68

129
0.27

0.00001
0.00000

0.85
1.10

Ques-
tions in
LaiAn
experi-
ment

Mea-
sure

Average
ontol-
ogy-
based

Average
file-
based

Differ-
ence

p-value
test
results

Effect
size

1 Seconds
F1 score

251
0.94

259
0.79

7
0.16

0.29864
0.01245

0.15
0.49

2 Seconds
F1 score

102
0.91

196
0.43

94
0.48

0.00214
0.00002

0.61
0.88

3 Seconds
F1 score

216
0.88

263
0.75

47
0.13

0.03548
0.03108

0.38
0.40

4 Seconds
F1 score

102
1.000

204
0.98

102
0.02

0.00193
0.15865

0.62
0.21

All
ques-
tions

Seconds
F1 score

168
0.93

230
0.74

62
0.20

0.00055
0.00000

0.70
0.95

96

6.2. HOW AK ORGANISATION AFFECTS AK RETRIEVAL

Knowledge Retrieval Effectiveness

The difference in AK retrieval effectiveness between the two approaches was sta-
tistically significant for all Océ experiment questions, except for question 1A, as
shown in Table 6.3. Consequently, we reject the null hypothesis H0B and accept
the alternative H1B for all Océ questions, except question 1A.

The difference in effectiveness between the two approaches was statistically signif-
icant for all LaiAn experiment questions, except for question 4, as shown in Table
6.3. Consequently, we reject the null hypothesis H0B and accept the alternative
H1B for all LaiAn questions except question 4. H1B was not accepted for LaiAn
question 4 and Océ question 1A because the file-based AK organisation provided
much support for these questions (see end of Section 6.2.1 for more details).

6.2 How AK Organisation Affects AK Retrieval

The use of the ontology-based approach resulted in more efficient and effective
AK retrieval than the use of the file-based approach in the experiment. The
ontology-based AK organisation addresses the issues of file-based AK organisa-
tion, however, this does not explain how and why the organisation of AK affects
AK retrieval efficiency and effectiveness, which is analysed in detail in this section.
We need to analyse in detail how AK retrieval was influenced by the organisation
of AK.

One of the objectives of this work is to identify how AK organisation may fit
the AK retrieval needs of document users. We analyse how AK organisation
supported participants in finding the types of AK and relationships between AK
in each experiment question. We then compare how much of the file-based and
ontology-based AK organisation gave support for the questions and we identify
the usage of AK organisation by analyzing video recordings in the experiment.
Next, we verify whether the use of supporting AK organisation results in efficient
and effective AK retrieval. We then report how the AK organisation affected the
search behaviour of participants.

6.2.1 AK Organisation

Fitting AK Organisation

The file-based documentation that was used in the experiments is organised by
sections at LaiAn and by directories, documents, and sections at Océ. Ontology-

97

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

based documentation is organised by ontology classes and by semantic relation-
ships between classes. Figures 6.2 and 6.3 depict the AK organisation that pro-
vides one or more paths to the answers for each experiment question, i.e., the
directories, documents, sections, ontology classes, and semantic relationships that
allowed participants to navigate towards answers or which contained answers.

Some of the nodes on a path to the answer explicitly relate to the question asked.
For example, question 1A talks about settings and behaviour. The file-based
documentation has a directory with software behaviour documents, which in turn
has a document "behaviour print settings" with a section "system settings" and a
subsection “settings” with text that makes it explicit where behaviour is described
(see Figure 6.2). Here, the path to the answer has intermediate nodes which all
fit the question. Or, in other words, the AK organisation fits the question.
Conversely, when answering question 3A using the file-based documentation, the
user has to go through various intermediate nodes that do not explicitly contain
a reference to the question asked.

We term the nodes that explicitly refer to the question asked "fitting AK organ-
isation". Shaded elements in Figure 6.2 and 6.3 denote fitting AK organisation.

"Fitting AK organisation" is identified as AK organisation that supports the ques-
tions in the experiment. We adopt the specific term "fitting AK organisation"
and its definition because there may be other forms of support that an AK or-
ganisation provides for questions about AK. In the remainder of this chapter we
use "fitting AK organisation" to refer to the supporting AK organisation that is
identified and further investigated.

Influence of Fitting AK Organisation on AK Retrieval Efficiency and
Effectiveness

The AK organisation was largely fitting for experiment questions in ontology-
based documentation. The ontology-based AK organisation was overspecified
for LaiAn question 3, which is about requirements whilst the ontology-based
AK organisation provides a subdivision between functional and non-functional
requirements. LaiAn question 4 is underspecified for the AK organisation in the
ontology, as participants did not know exactly which architecture design elements
had to be found.

The file-based AK organisation was only partially fitting for most the experiment
questions. These questions were answered less efficiently and effectively in the
file-based approach as compared to the ontology-based approach. Figure 6.2 and
6.3 show the average measured efficiency (in seconds) and effectiveness (in F1
score) per question as a means for comparison.

98

6.2. HOW AK ORGANISATION AFFECTS AK RETRIEVAL

BehaviourSettings

impacts

impacts (inverse)

Ontology-basedFile-based

Doc – behaviour

XX (Q1A)

Section -

requirements

settings in text

Doc -behaviour

print settings

Section -

system settings

Subsection -

settings

Behaviour XX (Q1A)

and YY (Q1B) in text

Requirement

Behaviour

satisfies

Ontology-basedFile-based

Doc -

behaviour ZZ

Section -

requirements

Requirements

in text

Question 2: Which requirements for behaviour ZZ

(should be) satisfied (realized) by component YY?

Component

Components in

text

satisfies

realized byrealized by

ComponentDecision

decision is about

Ontology-basedFile-based

Question 3A: Which decisions have been made about

component XX?

Decision in text

decision is about

(inverse)

component XX in text

BehaviourDecision

decision is about

Ontology-basedFile-based

Doc - behaviour ZZ

Section - "discussion

around behaviour"

Question 3B: Which decisions have been made on the

configuration of behaviour XX, YY, ZZ and QQ?

Decision in text

decision is about

(inverse)

SubsystemInterface

interface is offered by

Ontology-based

File-based

Diagram file - Logical view

Diagram - subsystem overview

diagram element - subsystem

offers interfacediagram element – interface XX

Subsection - subsystem

Interface XX in text

Question 4A: Which subsystem is interface XX part of? and 4B: Which other interfaces are offered by this subsystem?

subsubsection - “rationale

and design decisions"

Subsection - subsystem

Doc - System reference

Doc - system reference

Subsection - “alternatives

considered &choice made”

Subsubsection - “Interfaces

offered by subsystem"

Section -

configuration

settings in text

Question 1A: Which settings have an impact on behaviour XX?

Question 1B: Which settings have an impact on behaviour YY?

Dir - Software

Behaviour Doc

Doc – behaviour

YY (Q1B)

Legend:

shaded

non-shaded

= fitting AK organisation that provides paths to answers

“Dir” = directory

“Doc” = document

Dir - Software

Behaviour Doc

Dir - sysref Dir - Software

Behaviour Doc

Dir - sysref

Q1A: 394 seconds, 0.99 F1

Q1B: 212 seconds, 0.65 F1

Q1A: 161 seconds, 0.97 F1

Q1B: 157 seconds, 0.85 F1
382 seconds, 0.70 F1 229 seconds, 0.95 F1

100 seconds, 0.123 F1

= average efficiency (seconds)

and effectiveness (F1 score)

401 seconds, 0.47 F1 148 seconds, 1.00 F1 197 seconds, 0.92 F1374 seconds, 0.59 F1

Q4A: 78 seconds, 0.74 F1

Q4B: 64 seconds, 0.68 F1

Q4A: 73 seconds, 1.00 F1

Q4B: 40 seconds, 1.00 F1

= AK organisation that provides paths to answers

Figure 6.2: AK organisation for answering experiment questions at Océ

99

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

ComponentRequirement

realized by

satisfies

Ontology-based

Question 1: Which requirements are realized by

architecture design element XX?

Requirement

Functional Requirement

Ontology-basedFile-based

Section -

system design

Subsection -

system detailed functions

Question 2: Which requirements are related to requirement YY?

Non-functional Requirement
Requirements

in text

is

related

 to

RequirementDecision

depends on

Ontology-basedFile-based

Question 3: Which requirements does decision ZZ

depend on?

Requirements in text

depends on

(inverse)

ArchitectureDecision

results in (inverse)

Ontology-basedFile-based

Section -

system design

Question 4: Which architecture design elements are caused by

decision QQ?

File-based

Subsection -

system design

Subsection -

subsystems and components

Requirements in text

quality is

related to

(inverse)

Subsection -

design principles

Subsystem Component
comprises of

part of

Section -

system design

Subsection -

design principles

Subsubsection - decisions

Subsystems and

Components in text

Subsubsection - decisions

quality

 is

related to

results in

Subsection – software

architecture design

Subsection -

architecture design XX

Requirements in text

273 seconds, 0.79 F1 251 seconds, 0.94 F1 196 seconds, 0.43 F1

216 seconds, 0.88 F1 201 seconds, 0.98 F1 102 seconds, 1.00 F1

102 seconds, 0.91 F1

263 seconds, 0.75 F1

Figure 6.3: AK organisation for answering experiment questions at LaiAn

For example, the average time spent by participants answering Océ question
3A in file-based documentation was double that of participants using ontology-
based documentation and they still retrieved less correct and complete answers.
Similarly, the file-based AK organisation was not very fitting for LaiAn question
2, resulting in less efficient and effective AK retrieval as compared to ontology-
based documentation.

Some questions are relatively well supported in file-based AK organisation, e.g.,
Océ question 1A and LaiAn question 4. The questions are often answered with
similar efficiency and effectiveness in file-based and ontology-based documenta-
tion. This explains why there is no significant difference in effectiveness between
the documentation approaches for these questions (also see Section 6.1.6).

100

6.2. HOW AK ORGANISATION AFFECTS AK RETRIEVAL

The file-based organisation however provided less paths to answers for Océ ques-
tions 2 and 3 and all LaiAn questions. Moreover, not all intermediate nodes on
the path to answers were fitting. This provided less opportunity for participants
to use fitting AK organisation when answering these questions. The semantic
relationships in the ontology-based organisation allowed participants to find AK
using multiple paths. For example, when answering Océ question 1A they could
find answers by relating all settings to behaviour XX or vice versa, relating be-
haviour XX to all settings via semantic relationship ’impacts’.

6.2.2 Use of Fitting AK Organisation

The analysis in Section 6.2.1 indicates that presence or absence of fitting AK
organisation influences the efficiency and effectiveness of AK retrieval. However,
this analysis does not tell us how participants used the available AK organisation.

There are answers that can be found in multiple file-based document sections,
each with a varying amount of fitting AK organisation. Participants could use
any of these sections to find answers. Moreover, participants could skip AK
organisation by keyword searching on the names of AK instances. In this case
they, e.g., skip the table of contents or class navigation and directly go to a
document section or wikipage, respectively.

In order to analyze what AK organisation was used, we look at the search ac-
tions of participants during the experiment. We captured the search actions of
participants by video recording what was shown on their monitor screen when
they answered the experiment questions. Table 2.2 in Chapter 2 shows the dif-
ferent types of search actions in file-based documentation that we identified and
encoded from the videos.

We measured use of AK organisation in about 6,000 search actions in over 11
hours of video recordings. We could not record videos of 9 out of the 22 LaiAn
participants. Part of the video recordings of 2 participants in the Océ experiment
were corrupted beyond repair.

”Use” of AK organisation might have different interpretations and meanings in
different contexts. For example, participants might use an AK organisation by
keeping in mind which document or section they are reading. This form of use
is however hard to objectively measure. For our measurements, we consider
fitting AK organisation to be used if 1) the fitting AK organisation appears on
the screen of a participant, 2) the participant has enough time 4to recognize the
fitting AK organisation, and 3) the participant follows the fitting AK organisation

101

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

and navigates to answers.

RatioTimeFitting is introduced as a metric which represents how much time par-
ticipants spent using fitting AK organisation to answer an experiment question.
RatioTimeFitting is calculated per participant per experiment question by di-
viding the ’time spent using fitting AK organisation’ by the ’total time spent
searching for AK ’.

Figure 6.4 shows how RatioTimeFitting was calculated from the search actions
of a participant answering Océ question 1A. The first two search actions involve
use of a directory and document with titles that explicitly relate to a type of AK
mentioned in question 1A, namely "behaviour". The 3 seconds spent on these
actions is added to the ’time spent using fitting AK organisation’ and the ’total
time spent searching for AK ’.

The next two search actions in Figure 6.4 do not involve use of fitting AK organ-
isation; the participant quickly scrolled past the text in the title page and section
2. The 12 seconds spent is only added to the ’total time spent searching for AK ’.
Actions 5 and 6 again involve use of fitting AK organisation because "setting"
(an AK type in question 1A) is explicitly mentioned in text that is organised by
a special layout, and because the text contains the answers to question 1A.

Participants using the ontology-based approach had a higher average RatioTime-
Fitting than participants using the file-based approach, i.e., they spent more time
using fitting AK organisation during AK retrieval. On average the RatioTime-
Fitting of Océ participants was 0.72 when using the ontology-based approach
and 0.39 when using the file-based approach. LaiAn participants had an average
RatioTimeFitting of 0.70 when using the ontology-based approach and 0.63 when
using the file-based approach.

The difference in RatioTimeFitting between the two approaches is smaller in the
LaiAn experiment. This is due to the complexity of the file-based documentation:
a single document was used at LaiAn whereas multiple documents and directories
were used at Océ. Consequently, there was less non-fitting AK organisation to
navigate in the less complex file-based AK organisation at LaiAn.

To verify that the use of fitting AK organisation influences AK retrieval, we test if
a correlation exists between RatioTimeFitting and the efficiency and effectiveness
of AK retrieval.

4Based on our observations from the experiment videos we chose to use 3 seconds as the
minimum time required for participants to recognize and use fitting AK organisation in their
searches. We observed that participants would act upon the fitting AK organisation after 3
seconds or more. After 3 seconds they would, e.g., open documents, click in ArchiMinds’ class
navigation, give answers from text containing fitting AK organisation, or talk about the AK
organisation and surrounding AK.

102

6.2. HOW AK ORGANISATION AFFECTS AK RETRIEVAL

Which settings have an impact on behaviour ``YY''

Scroll from title page to section 2

(skipped table of contents) - 1 seconds

Detailled scan of section 2.3 (on behaviour YY) - contains

highlighted text that mentions “setting” - 21 seconds

Scroll from section 5 to title page – 10 seconds

Océ experiment question 1A =

Participant search actions =

RatioTimeFitting=
(Ratio of time spent using fitting AK organisation)

Open directory with behaviour documents - 2 seconds

Scan section 2 - 11 seconds

Open behaviour document - 1 second

Scan section 3 to 5 - 5 seconds

= 0.62 (62%)
50 seconds spent searching for AK in total

31 seconds spent using fitting AK organisation

Detailled scan of section 2.4 (on configuration) - contains

highlighted text that mentions “setting” - 7 seconds

Figure 6.4: Example calculation of RatioTimeFitting from search actions of a
participant using the file-based approach

We use the following hypothesis:
H1C = There is a correlation between the use of fitting AK organisation and the
efficiency and effectiveness of AK retrieval.
The null hypothesis states that there is no correlation.

Time-effectiveness is introduced to represent AK retrieval efficiency and effec-
tiveness in a single metric which allows for testing of the hypothesis using two
variables (RatioTimeFitting and Time-effectiveness). Time-effectiveness is cal-
culated per answer in the experiment by dividing the F1 score (effectiveness) by
the ’total time spent searching for AK ’ (efficiency).

A Time-effectiveness of 0.02 (e.g., for F1 score 1.0 divided by 50 seconds spent
searching for AK) means that a participant is able to retrieve 2% of the complete
and correct answer to an experiment question each second. Someone with a
Time-effectiveness of 0.04 (or 4%) is twice as fast, e.g., by finding a complete and

103

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

correct answer in 25 seconds.

The RatioTimeFitting and Time-effectiveness for three Océ participants answer-
ing question 4 are not included in the test. These participants were not familiar
with UML notations for interfaces and are not representative of the other 23
participants in this case.

Using the Shapiro-Wilk test, we found that the measurements for RatioTime-
Fitting and Time-effectiveness are not normally distributed. Therefore the non-
parametric Spearman’s rank correlation test is applied.

Application of Spearman’s rank test indicates a strong correlation (coefficient r
= 0.67) between RatioTimeFitting and Time-effectiveness in the Océ experiment
and a moderate correlation (coefficient r = 0.48) at LaiAn. These test results are
statistically significant at the p=0.01 level with a (2-sided) P-value of 6.98−24 for
the Océ measurements and 0.00035 for the LaiAn measurements. Consequently,
we reject the null hypothesis H0C and accept the alternative hypothesis H1C.

Figure 6.5 depicts the correlation in a scatterplot, where the x-axis displays Ra-
tioTimeFitting and the y-axis displays Time-effectiveness. Each dot in the scat-
terplot represents a single participant answering a single question. Dots in the
upper right corner represent participants that took relatively little time to find
a correct and complete answer (i.e. high Time-effectiveness) whilst primarily us-
ing fitting AK organisation. Dots in the lower left corner represent participants
who did not find complete and correct answers quickly whilst using little fitting
AK organisation. Figure 6.5 shows that increased use of fitting AK organisation
(RatioTimeFitting on the x-axis) leads to increased Time-effectiveness of AK
retrieval (on the y-axis).

6.2.3 AK Organisation and Search Behaviour

The test for correlation and our observations in the experiment videos give evi-
dence that when participants used fitting AK organisation they:

1. quickly recognized the types of AK and relationships between AK.

2. quickly and correctly recognized the location of answers.

3. less often misinterpreted the descriptions of AK because the type of AK
and the context of AK (i.e. relationship to other AK) was explicit.

4. continued searching if they had not retrieved all correct answers. They had
a better understanding where to find different types of AK and relationships
between AK.

104

6.2. HOW AK ORGANISATION AFFECTS AK RETRIEVAL

Figure 6.5: Correlation between RatioTimeFitting and Time-effectiveness when
answering Océ and LaiAn experiment questions in the file-based and ontology-
based documentation approach

105

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

When participants used less fitting AK organisation they often gave less correct
answers. In this situation participant also spent more time searching documenta-
tion to verify that they found a complete (recall) and correct (precision) answer.

Participants navigated many file-based documents and sections when they en-
countered little fitting AK organisation. For instance, we measured from the
video recordings that participants answering Océ question 3A navigated 3.6 di-
rectories and 4.7 file-based documents on average. In the ontology-based ap-
proach they however navigated only 1.8 classes and 1.2 semantic relationships on
average.

In Chapter 2 we report an in-depth analysis of participants’ search behaviour
when they used the file-based documentation approach in the Océ experiment.
We found that the participants had to deal with search uncertainty when fitting
AK organization was missing in part of the navigation path to the answers. As a
result, participants were not always certain in which document or section AK was
located. Keyword searching helped to locate AK, but often took much time and
gave incomplete results due to spelling variations, abbreviations, and synonyms.
Participants said they were uncertain about the completeness and correctness of
38% of their answers from file-based documentation.

Participants could use the ontology-based AK organization by listing class in-
stances in an overview and by faceting and filtering AK via semantic relation-
ships. During the experiment we observed that these search features allowed par-
ticipants to quickly check the completeness of their answers and remove search
uncertainty. This use of ontology-based AK organization prevented errors and
wasted time that might otherwise occur when dealing with search uncertainty in
file-based documentation.

However, participants had to learn how to use the AK organisation in ArchiMind,
reducing its positive effect on efficiency and effectiveness. For example, some
participants were uncertain about how to use ontology-based AK organisation to
filter AK in ArchiMind.

Several participants commented in a questionnaire (reported in Section 6.3)
that the semantic relationships between AK and the class instance overview
in ontology-based documentation allowed them to check for completeness and
provided determinism to their answers. Participants commented that the use
of semantic relationships for AK structuring, traceability, and navigating was
helpful, and several commented that the semantic relationships removed search
uncertainty and gave more search options to find relevant AK. When asked about
issues with searching in file-based documentation, participants commented that
indeterminism and difficulties in ensuring completeness of answers are problem-
atic, which corresponds with findings about search uncertainty in Chapter 2.

106

6.3. QUALITATIVE EVALUATION

6.3 Qualitative Evaluation

After the experiments we asked each participant to fill in a questionnaire, reported
in Table Table 6.4, in which the file-based and ontology-based approach (referred
to as ’ArchiMind’) are evaluated. Table 6.5 reports an evaluation of the ontology
and experiment by a subset of the Océ participants during a workshop and by
LaiAn participants during meetings after the experiments took place.

The Océ workshop was announced via email and posters to invite software profes-
sionals working in the location where the experiment took place. The evaluation
form (the basis for Table 6.5) could be collected when leaving the room where the
workshop took place. We emailed LaiAn experiment participants to ask for their
interest in evaluating the experiment findings. 10 LaiAn participants indicated
that they were willing to fill in the evaluation form and we selected 6 participants
by considering a wide coverage and even distribution of their roles.

6.3.1 Evaluation of Documentation Approaches

Most participants evaluate the ontology-based approach and its search mecha-
nisms as being better than the file-based approach for searching AK. Partici-
pants generally feel it is worthwhile to implement ontology-based documentation
in their company as long as its benefits outweigh the costs and if enough support
is given.

Table 6.4: Questionnaire about File-based and Ontology-based Approach

1: When searching for software knowledge, would you evaluate
ArchiMind, compared to normal documentation, as:
Océ: Better: 24 (92.3%) Worse: 0 (0%) Making no difference: 2 (7.7%)
Most participants comment that they find (semantic) relationships important
and useful when searching software knowledge. The search mechanisms, facets,
structure, and (centralized) accessibility are also found useful by participants.
LaiAn: Better: 14 (63.6%) Worse: 6 (27.3%) Making no difference: 0 (0%)
No opinion: 2 (9.1%)
Some participants evaluate ArchiMind as worse because they feel that the UI is
unsuitable for software documentation. This may be partially due to the lack
of in-wikipage annotation in the LaiAn experiment (also see Section 6.1.3).

continued on next page. . .

107

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

2 : Do you think that ArchiMind can provide you with better search
mechanisms than currently at your disposal?
Océ: Yes: 25 (96.2%) No: 0 (0%) I do not know: 0 (0%) No opinion on
this: 1 (3.8%)
Most participants comment that the semantic relationships are useful for
searching.
LaiAn: Yes: 13 (59.1%) No: 2 (9.1%) Some better, some not: 7 (31.8%)
No opinion: 0 (0%)
Most participants find that ArchiMind provides meaningful traceability infor-
mation. Some participants feel that the search mechanisms are not very con-
venient in some situations. For example, different levels of requirements exist,
from system goals to detailed requirements, and users cannot distinguish be-
tween these levels when searching requirements.
3: Do you think it is worthwhile to set up a semantic wiki at your
company for searching software knowledge & documentation man-
agement?
Océ: Yes: 17.5 (67.3%) No: 2 (7.7%) I do not know: 6.5 (25%) No
opinion: 0 (0%)
Most participants comment they do not know whether the benefits of the
ontology-based approach outweighs the costs. Other elaborations given are
that enough effort should be invested, authorization should not be an obstacle,
training should be provided and that the knowledge in the system should be
complete, maintained well and reviewed by an expert. One participant chose
both options ‘yes’ (for management) and ‘I do not know’ (for searching).
LaiAn: Yes: 14 (63.6%) No: 3 (13.6%) I do not know: 4 (18.2%) No
opinion: 1 (4.5%)
Most participants support the idea that it is worthwhile to set up a semantic
wiki within their companies. Some participants tend not to change to semantic
wiki when current documentation tools work well. Other participants are con-
cerned about the conformance issue of documentation (e.g., document template
and structure prescribed by customers), especially in outsourcing projects. Two
participant chose both options ‘Yes’ and ‘No’ with their arguments. For ex-
ample, one thinks that the answer of this question depends on the size of the
project: traditional documentation tools, like Office Word, are appropriate for
small projects and the semantic wiki is better for large and complex projects.

continued on next page. . .

108

6.3. QUALITATIVE EVALUATION

4: Do you experience troubles in your daily job when searching for
software knowledge using the standard documents?
Océ: Yes: 23 (88.5%) No: 3 (11.5%)
Most participants comment that documentation is often outdated. Other elab-
orations are that documentation is incomplete, indeterministic, difficult to ac-
cess or even hidden, contained in (too) many (scattered) sources, hard to verify
whether trustworthy, costly to keep up to date, lacks detailed information, and
has conflicting requirements.5

LaiAn: Yes: 8 (72.7%) No: 3 (27.3%) (this question was answered by half
of the participants)
Most participants comment that only few documents are really useful and have
been used in the software development because it is difficult to find the informa-
tion they want. Other issues are lack of traceability in requirements and design
specifications, and difficulty in performing impact analysis using documents.
5: From which sources do you normally get knowledge about the
software made at your company?
Océ: Most often mentioned are colleagues, then documents, source code,
Sharepoint, Docfinder, and CMSynergy.
LaiAn: Documents are most often mentioned and after that colleagues and
source code.
6: From which types of documents do you normally get knowledge
about the software made at your company?
Océ: Most participants use SBDs. SADs, interface and functional specifi-
cations, diagrams, technical reports and source code are also used as well as
impact analysis, high level architecture, Sysref, and module design documents.
LaiAn: Most participants use requirement and architecture documents. De-
sign, bidding, business process, project planning, test, traceability, and API
documents are also used as well as source code and customer surveys.
7: What percentage of your time do you daily spend on searching
and retrieving software knowledge?
Océ:: 19.75%. The answers range from 0% to 50% or more. This question
was answered by half of the participants.
LaiAn: 29.17%. The answers range from 10% to 60%. This question was
answered by all the participants.

5Océ successfully applies an agile development methodology to encourage creativity and
productivity. The drive to deliver business results is strong, and this takes precedence over
writing excessive documentation.

109

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

Table 6.5: Experiment and Ontology Evaluation at Océ and LaiAn

1: Do you believe in the experiment results? (do the results represent
reality or are they artificial)

Océ: Yes: 4 To a certain extent: 1 No : 0
LaiAn: Yes: 5 To a certain extent: 1 No : 0

2: Are the experiment results limited to the specific question set used in
the experiment?

Océ: Yes: 1 Maybe: 2 No: 2
LaiAn: Yes: 2 Maybe: 2 No: 2
Océ respondents comment that there are many questions and that it will be hard to
model the entire working field.

3: Are the experiment questions relevant to your job and representative
of the questions you ask during your job?

The Océ and LaiAn respondents evaluate all questions as relevant and representative
for their jobs except for Océ question 3A (decisions made about a component) and
LaiAn question 1 (requirements realized by architecture design) which one Océ and
one LaiAn respondent evaluate as irrelevant and not representative.

4: Is the ontology model used in the experiment a correct representation
of reality?

Océ: Yes: 3 To a certain extent: 2 No: 0
LaiAn: Yes: 4 To a certain extent: 2 No: 0

5: Should there be more or less concepts in the model?

Océ: More: 4 The same amount: 1 Less : 0
LaiAn: More: 2 The same amount: 4 Less : 0
An Océ respondent indicates that more specific domain knowledge should be added.

6: Is it practical to work with the predefined model of software (architec-
ture) knowledge?

Océ: Yes: 5 To a certain extent: 0 No : 0
LaiAn: Yes: 5 To a certain extent: 1 No : 0

7: Does the model help in reasoning about what knowledge is in the docu-
ments and what should be in documents?

Océ: Yes: 5 To a certain extent: 0 No : 0
LaiAn: Yes: 6 To a certain extent: 0 No : 0

110

6.4. COST-BENEFIT ANALYSIS

6.3.2 Evaluation of Experiment and Ontology

Table 6.5 shows that most respondents consider the experiment questions to be
relevant for their job and representative of the questions they ask in their daily
work. This evaluation by experienced documentation users indicates that we
asked the right questions in both experiments.

Part of the respondents think that the experiment results are limited to the
specific question sets. Their remarks suggest that it will be challenging to give
ontology support for all domain knowledge and questions asked. Even though the
respondents generally evaluate the ontology as realistic, most Océ respondents
think there should be more domain concepts in the ontology. This may very well
reflect the specific domain in which they work.

6.4 Cost-Benefit Analysis

The experiment results show that ontology-based documentation can provide
benefits by improving the efficiency and effectiveness of AK retrieval. However,
there are also costs associated with setting up ontology-based documentation.
A concern that Océ and LaiAn practitioners have with adopting the ontology-
based approach in their projects is whether its benefits outweigh its costs (see
question 3 in Table 6.4). In this section we provide a cost-benefit analysis of
using ontology-based documentation in the studied projects at Océ and LaiAn.

Costs and benefits are undeniable factors when discussing the documentation of
SA [10]. A recent systematic literature mapping in [122] however shows that
there is very little work about the cost aspect of software documentation. Even
less work is published that quantifies both the costs and benefits, or the return on
investment of using software documentation. One notable example is the work
by Garousi et al. in [38], where a cost-effectiveness index of technical software
documents is calculated by dividing the number of times that a document is
accessed or downloaded (benefit) by the time spent editing this document (cost).

Similarly, we use measures that represent costs and benefits of ontology-based
documentation in order to estimate its return on investment when it replaces
file-based documentation. We estimate costs from the recorded time spent on
creating the ontology-based documentation in the experiments. We estimate
benefits from the efficiency and effectiveness measurements in the experiment
and document usage estimates by professionals. The estimates by professionals
are crude, e.g., "I estimate 20% to 25%", and therefore the cost-benefit analysis
is indicative.

111

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

6.4.1 Costs and Benefits in Océ Project

We spent 4 hours installing and configuring ArchiMind. Around 40 hours were
spent to build the Océ ontology and semantically annotate AK in the 79 pages
in the Océ experiment document subset. We estimated that the total set of
actively used product-line reference architecture documents is 2024 pages in size.
Building an ontology for, and semantically annotating the AK in the total active
documentation set is estimated to cost around 1028 hours.

Océ participants estimate that on average they spend 19.75%, or 1.6 hours, of
their daily working time on retrieving software knowledge (see question 7 in Table
6.4). By consulting 13 Océ professionals in most project roles we estimated that
out of the 1.6 hours each day, 16.6 minutes is used on average to retrieve AK
from the product-line reference architecture documents.

At least 50 Océ professionals use the reference architecture documents, as shown
in Table 6.1. The Océ experiment participants spent 47.06% less time on av-
erage when they used the ontology-based approach, compared to the file-based
approach. From this we estimate that on average 6.5 hours can be saved each
workday by the 50 Océ professionals combined.

6.4.2 Cost and Benefit in LaiAn Project

We spent 4 hours installing and configuring ArchiMind at LaiAn. Around 24
hours were spent to semantically annotate the single SA document of 46 pages
which is the total document set that specifies the SA in the studied project.

LaiAn participants estimate that on average they spend 29.17%, or 2.3 hours,
of their daily working time on retrieving software knowledge (see question 7 in
Table 6.4). By consulting a subset of the participants that cover all project roles
we estimated that out of the 2.3 hours each day, 17.4 minutes is used on average
to retrieve AK from SA documentation.

At least 22 LaiAn professionals use the experiment document, as shown in Table
6.1. The LaiAn experiment participants spent 26.96% less time on average when
they used the ontology-based approach, compared to the file-based approach.
From this we estimate that 1.7 hours can be saved each workday by the 22 LaiAn
professionals combined.

112

6.5. THREATS TO VALIDITY

6.4.3 Return on Investment

We give an estimation of the period after which the replacement of file-based
documentation with ontology-based documentation in the studied projects re-
sults in an overall time gain. This is a coarse estimation because it depends on
many variables; the return on investment may be sooner or later depending on,
e.g., the learning curve of professionals using the semantic wiki, proficiency of
professionals that semantically annotate the documents, and the exact usage of
SA documentation across different software project phases.

We have not measured the cost of maintaining ontology-based SA documentation,
e.g., updating document content in wikipages and updating AK organisation in
the ontology to support evolving AK needs.

We estimated in Section 6.4.1 that the ontology-based approach can save 6.5
hours each working day on average at Océ, and this accumulates to 1690 hours
time savings each year. This indicates that the return on the 1028 hours invest-
ment cost, i.e., the break-even point, is around 7 months (or 158 working days)
after ontology-based documentation is introduced. The time savings after the 7
months apply to product-line reference architecture documentation that is used
for multiple years.

We estimated that the ontology-based approach can save 1.7 hours each working
day on average at LaiAn. This indicates that the return on the 28 hours of invest-
ment is around 3 weeks (or 16 working days) after ontology-based documentation
is introduced. The time savings after the 3 weeks apply to SA documentation
that is used for several months in the studied project.

The ontology-based approach also improves the effectiveness of AK retrieval.
Having more correct and complete information prevents errors, which in turn
also saves time that would normally be spent on correcting these errors.

6.5 Threats to Validity

In our experiment plan, we accounted for possible threats during the experiment
design. We followed guidelines from [54] for reporting the experiments and its
threats to validity.

113

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

6.5.1 Construct Validity

The researchers who created the ontology later also proposed the experiment
questions. The creation of the ontology and the preparation of the experiment
questions were done as separate activities at different times. The questions
were not set based on the ontological structure. The experiment questions were
checked by professionals to ensure that they are representative of questions asked
by professionals in the studied domains. To ensure that the answers could be
found in both approaches, the researchers checked if the answers could be found
using both the ontology-based and file-based AK organisation. We mitigated this
potential bias by using experiment questions based on the experiment documen-
tation content and evaluation of four selection criteria by professionals in a pilot
study (see Section 6.1.3). The group of pilot study participants was different
and independent from the software professionals that provided Océ concepts and
relationship types for Océ ontology extension.

The use of ontology-based documentation did not always favour AK retrieval
efficiency and effectiveness. For instance, several experiment questions could be
answered using the inverse of semantic relationships in the ontology, namely, Océ
questions 1A, 1B, 3A, and 3B and LaiAn questions 2, 3, and 4. This negatively
impacted the performance of the ontology-based approach in our experiment.

6.5.2 Internal Validity

A subset of the documentation from one particular Océ project was used. Partic-
ipants from that project had, more than other Océ participants, prior knowledge
of this documentation. However, the document and question types used in the
experiment were generic. To avoid prior knowledge that could bias our results,
participants were not informed about how much and precisely which documents
were present in the documentation subset used in the experiment. Moreover,
they were instructed to always find and verify possible answers in the experiment
documentation despite any prior knowledge.

In the Océ experiment the description of interfaces, required for question 4B,
was outdated in the system reference document. Océ professionals verified that
presence of outdated documents is a common situation, e.g., during development.
We chose to not update any AK in order for the file-based and ontology-based
document content to be identical and realistic. This situation does not affect the
interpretation of our results.

A possible bias is that participants that evaluated the experiment results (re-
ported in Table 6.5) are more curious and receptive to new ideas and tools, and

114

6.5. THREATS TO VALIDITY

this is a potential threat to validity. We tried to mitigate this threat by send-
ing an open invitation for the Océ workshop and by selecting a subset of LaiAn
participants based on a wide coverage of their roles (see Section 6.3).

6.5.3 External Validity

Even though exact replication between experiments in software engineering is
unattainable [13], we aimed for maximum consistency between the experiment
procedures in the Océ and LaiAn experiments. Several variations between the
experiment domains, e.g., those reported in Table 6.1, indicate that the results
are generalizable to other software project domains. The use of SADs, SBDs, sys-
tem reference-, and design documents can be considered generic documentation
practice in industry.

The specific set of questions asked in the experiment limits generalization, even
though we verified that the questions are representative of the questions that
the industry professionals ask in their daily work. For example, the experiment
questions involve traceability between AK, which may not be fully representative
of questions in other software projects. Moreover, the questions involve retrieval
of AK that is explicitly present in documentation, as opposed to, e.g., retrieval
or evaluation of AK from memory and colleagues.

We did not investigate how frequent the experiment questions are normally asked
in the studied projects. This limits generalization because certain questions may
be asked more frequently than others, and thus have a greater impact on AK
retrieval efficiency and effectiveness.

Architectural models were searched and traced via a UML modelling tool (Magic-
Draw) in the file-based approach at Océ, and viewed as static pictures embedded
in the file-based document at LaiAn. The use of architectural modelling tools
in our experiment may be different from other software industry projects, which
may adopt advanced architectural modelling tools with extensive search, AK
annotation, cross-referencing, and tracing features. A file-based documentation
approach that includes the use of more advanced architectural modelling tools
may provide better AK retrieval efficiency and effectiveness than the file-based
approach studied in our experiment.

Several factors in the cost-benefit analysis limit generalization. The seman-
tic annotations were manually applied, which is more costly than the use of
semi-automatic annotation. The researchers had little domain knowledge, which
increased the time required for Océ ontology extension. The studied software
projects at Océ and LaiAn are architecture-driven, which increases the usage of

115

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

SA documentation and in turn increases the potential benefits ontology-based
SA documentation.

6.5.4 Conclusion Validity

As the data collected in the experiment is not normally distributed, we cannot
calculate statistical power under the assumption of normal distribution. The
increased chance of a Type II error (false negative), when using a non-parametric
test on normally distributed data, does not apply here [37].

6.6 Implications

6.6.1 Implications for Practitioners

We found that the use of AK organization that is fitting for questions correlates
with the efficiency and effectiveness of answering these questions. Use of fitting
AK organisation helped participants to quickly identify the location of answers
and correctly recognize the answers. Lack of fitting AK organisation introduces
search uncertainty about the location and completeness of answers, which caused
participants to waste time searching for AK in wrong locations and miss answers.

This means that AK retrieval from existing file-based documentation in industry
can be improved by providing more fitting AK organisation for the questions of
its users. This can be done by first identifying what questions document users
ask and then creating an AK organisation that explicitly denotes where the types
of AK and relationships between AK in these questions can be found.

If there are many users in a project, with many different questions about inter-
related AK, then an ontology-based approach may be more cost-effective than
a file-based approach. An ontology is non-linear and can provide a fitting AK
organization for many questions about interrelated AK without introducing re-
dundancy and scattered AK descriptions. When there are many AK users this
results in large benefits that may outweigh the costs of creating ontology-based
documentation.

However, a linear file-based AK organisation can be fitting for the set of questions
that is most frequently asked. Our findings in Section 6.2 suggest that the AK re-
trieval efficiency and effectiveness of file-based and ontology-based documentation
is similar when both approaches provide fitting AK organisation for questions. A
file-based approach could be more cost-effective, e.g., in small projects with few

116

6.6. IMPLICATIONS

AK users, because creation of a file-based document for a few questions that are
frequently asked could be less costly than setting up ontology-based documenta-
tion, whilst both approaches provide similar benefits in this case.

We found that a tutorial on the features of the ArchiMind semantic wiki tool is
helpful to efficiently and effectively use ArchiMind for the first time. The partic-
ipants in the Océ experiment followed a 30 to 45 minute tutorial on ArchiMind
and used the ontology-based approach more efficiently and effectively at the start
of the experiment as compared to the LaiAn participants who followed a 5 minute
tutorial.

6.6.2 Implications for Researchers

Software and its architecture is decomposed by separation of concerns and this
is reflected in its documentation. The linear nature of file-based documentation
imposes practical limitations when comprehensively describing the relationships
between AK that are relevant for the concerns of document users. The limitations
of the linear file-based documentation format are overcome in ontology-based
documentation.

In our experiment, we demonstrated that an ontology-based organisation can
support many relationships between AK and prevent redundancy in the descrip-
tions of AK. File-based documentation supported less relationships between AK
and did contain redundant and scattered AK descriptions.

In our analysis we quantified the impact of AK organisation on the efficiency and
effectiveness of AK retrieval. The correlation between the use of fitting AK or-
ganisation and the time-effectiveness of AK retrieval explains why ontology-based
documentation was more effective and efficient than file-based documentation.
Moreover, the analysis of the AK organisation and the correlation apply to both
documentation approaches and show that one can improve AK retrieval from SA
documentation in general by providing more fitting AK organisation.

Viewpoints and views are used to frame and address the concerns of stakehold-
ers [2]. Our findings suggest that stakeholders retrieve AK more efficiently and
effectively when view-based descriptions have a fitting AK organisation for the
questions that follow from their concerns. Combining view-based architecture
descriptions with an ontology-based approach, as proposed by Tamburri in [99],
seems promising in this light.

117

CHAPTER 6. HOW ORGANISATION OF ARCHITECTURE
DOCUMENTATION INFLUENCES KNOWLEDGE RETRIEVAL

6.7 Related Work

López et al. [68] proposed the Toeska Rationale Extraction (TREx) approach
to recover, represent, and explore design rationale in text documents, including
in-page semantic annotations. The Toeska ontology, based on ArchVoc [8], is
used together with the NDR ontology. Semantically annotating AK concepts
outside these ontologies requires adaptation of the TREx tools, ontologies, and
experience with natural language processing, whereas our approach only requires
ontology adaptations. A web-based rationale browser allows for retrieval of AK
using faceting and linking to document sources, and these features are also pro-
vided in ArchiMind. It is not specified in [68] whether this rationale browser
supports the same search features as ArchiMind, e.g., keyword search, ontology
browsing, and filters. Evaluation by comparing the precision, recall, and time-
cost of AK retrieval between a file-based and ontology-based approach is similar
to our experiment setup. However, complete recovery of all AK in a document
set by students and by an automated rationale recovery system is tested in [68],
whereas we tested AK retrieval using a specific set of questions that was answered
by industry professionals. Their case study provides evidence that AK recovery
is more effective when using an ontology-based approach.

Jansen et al. [51] proposed a method, and the associated Knowledge Architect
tool suite, for semantic annotation of AK in SA documents. An ontology is
constructed by identifying AK concepts in SA documentation, whereas we use
a general-purpose AK ontology and AK needs collected from software profes-
sionals for Océ ontology extensions. Their approach uses an MS word plug-in
for semantically annotating and viewing AK ontology instances and a tool for
navigating AK instances and their relationships. Different tools are used for se-
mantically annotating, viewing, and navigating AK, whereas ArchiMind provides
a single integrated interface for this. In [51] evidence is provided that the use
of an ontology-based approach improves the understanding of AK in terms of
improved efficiency and quality of comments during architectural review. This
is different from our evaluation, which is in terms of AK retrieval efficiency and
effectiveness.

6.8 Conclusions

The major contribution of this work is the empirical evidence that explains how
the organisation of documented AK impacts the efficiency and effectiveness of
retrieving that AK. We conducted experiments in which software professionals

118

6.8. CONCLUSIONS

answered questions about AK that are representative of questions they ask in
their daily work. Part of the available AK organisation was fitting for AK re-
trieval; it explicitly denoted the AK types and relationships between AK specified
in the experiment questions. We found that the usage of fitting AK organisation
correlates with the efficiency and effectiveness of AK retrieval.

We quantified and verified the impact of AK organisation on the efficiency and
effectiveness of AK retrieval. The analysis that we conducted and the correla-
tion that we found show that it is possible to improve AK retrieval from SA
documentation by providing more fitting AK organisation for the questions of
documentation users.

Use of fitting AK organisation helped document users to quickly identify the
location of answers and correctly recognize the answers. Lack of fitting AK
organisation introduces search uncertainty about the location and completeness
of answers, which caused document users to waste time searching for AK in
wrong locations and miss answers. Ontology-based documentation can improve
AK retrieval by providing a more fitting AK organisation for many questions,
with more diverse possibilities to use the fitting AK organisation via multiple
navigation paths to the AK that needs to be retrieved.

The file-based document organisation reflects a single-dimensional AK organisa-
tion that curtails efficient and effective AK retrieval. However, not all questions
about AK are answered more efficiently and effectively using the ontology-based
approach. We tested a subset of questions in our experiment, and these questions
are about relationships between AK. A linear file-based AK organisation can be
fitting for certain questions and it might not be cost-effective to provide ontology
support for questions that are not often asked and for projects with few AK users.

We obtained similar results from experimentation in two companies which sug-
gests promising results for using semantic wikis in an industrial setting. The
cost-benefit analysis also indicates a positive return on investment.

119

7
Supporting Architecture Documentation:

A Comparison of Ontologies for
Knowledge Retrieval

In this chapter, we investigate how different ontology-based AK organisations in-
fluence the efficiency and effectiveness of AK retrieval from ontology-based doc-
umentation (RQ5). It is often difficult for SA document users to find all the AK
they need to do their tasks, and this results in wasted time and mistakes during
development. In this chapter we investigate how ontology-based documentation
may support users in finding the AK they need. We executed a controlled exper-
iment to test for differences in AK retrieval efficiency and effectiveness between
ontologies built from different understandings of the AK needs of document users.
We found that an improved understanding of AK needs allows for the construc-
tion of an ontology from which document users retrieve knowledge more efficiently
and effectively. In constructing the ontologies, we applied ontology design criteria
suggested by Gruber to improve their general qualities. In some cases we found
that the ontology support for AK needs had to be traded off against ontology design
criteria.

7.1 Introduction

Ontology-based documentation makes use of ontologies for non-linear organi-
sation of AK via classes and relationships, and this allows document writers to
comprehensively organise AK and relationships between AK for the needs of doc-
ument users. Recent studies provide evidence that the use of ontology-based AK

121

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

organisation improves architectural review quality [51] as well as the efficiency
and effectiveness of AK recovery [68], compared to file-based AK organisation.
The previous Chapter 6 gives evidence that the use of ontology-based AK organ-
isation improves the efficiency and effectiveness of AK retrieval, compared to the
use of a file-based AK organisation.

However, we do not know how different ontologies perform in terms of their
relative efficiency and effectiveness. In Chapter 6 we used ontologies built based
on the expected AK needs, namely the lightweight software ontology from [103]
which was built based on expected use cases for finding requirements and design,
and the ontology built based on the typical AK needs of Océ professionals (see
Chapter 5 and Figure 4.1). If we know the actual AK needs, and build an ontology
according to these needs, how would this ontology perform? Would an ontology
built from actual AK needs result in more efficient and effective AK retrieval
than an ontology built from expected AK needs?

As such, we compare an ontology built from expected AK needs with an ontology
built from actual AK needs. We investigate if there is any difference between the
two ontologies in terms of AK retrieval efficiency and effectiveness. We also
investigated the limitations of building an ontology from actual AK needs.

We report on a controlled experiment in which participants answer questions
about AK from ontology-based SA documentation in a semantic wiki. The par-
ticipants were organised in two groups. One group retrieved AK using an ontology
built from the AK organisation in an SA document. Another group retrieved AK
using an ontology built from the AK needs in an architectural review approach.
Both ontologies were intended and used for architectural review[11], however,
one was built from the expected AK needs of document users, i.e., built without
knowing their exact AK needs and questions, and the other was built from the
actual AK needs of document users in the experiment. We compared how the
use of the two different ontologies affected the time-efficiency and effectiveness
(in precision and recall) of AK retrieval by participants.

The experimental results show that the use of the ontology built from the actual
AK needs of document users was significantly more efficient and effective for some
experiment questions compared to the use of the ontology built from expected
AK needs of users. We identified which parts of the ontology-based AK organ-
isation supported the experiment questions. By analysing the search actions of
experiment participants we verified that the use of supporting AK organisation
positively correlates with the efficiency and effectiveness of AK retrieval.

We compared the AK organisation of the two ontologies, and found that the effi-
ciency and effectiveness of AK retrieval was improved when supporting knowledge
organisation was added. Adding redundant AK organisation did not significantly

122

7.2. AK RETRIEVAL EXPERIMENT

improve AK retrieval efficiency and effectiveness. We used several criteria for
designing clear and extendible knowledge sharing ontologies, and the use of these
design criteria limited the support for AK needs in the constructed ontologies.
The use of the ontology design criteria was thus traded off with lower AK retrieval
efficiency and effectiveness.

This chapter makes the following contributions:

• Demonstrate how an improved understanding of AK needs can be used to
provide ontology support for more efficient and effective AK retrieval.

• Identify the kind of ontology-based AK organisation that improves AK
retrieval efficiency and effectiveness.

• Illustrate how the use of ontology design criteria affects the organisation
and retrieval of AK.

Section 7.2 details on the experiment and its results. In Section 7.3 we analyse
the ontology-based AK organisation to explain the underlying causes for the
experiment results. In Section 7.4 we discuss insights gained from constructing
the ontologies and analysing the experiment results. Section 7.5 describes threats
to validity and Section 7.6 reports our conclusions and future work.

7.2 AK Retrieval Experiment

SA documentation often does not support the AK needs of all document users
in its AK organisation [80]. It is hard for document writers to accurately predict
all AK needs of document users, and this introduces a mismatch between the
AK needs that are supported in an SA document and the actual AK needs of
document users. We investigate whether support for the actual AK needs of doc-
ument users in an ontology affects the efficiency and effectiveness of AK retrieval
from ontology-based SA documentation.

We execute an experiment in which participants use two different ontologies to
answer questions about AK as part of an architecture review. One ontology is
built based on the AK needs that document writers expect document users to
have (an ’expected-needs ontology’) when conducting the architectural review.
The other ontology is built based on the actual AK needs of document users
(an ’actual-needs ontology’) when they conduct the architectural review. The
actual AK needs were identified by analysing questions in the architectural review
approach, and modelled in the actual-needs ontology to provide an organisation
for retrieving this AK.

123

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

We test whether there is a significant difference in time-efficiency and effective-
ness (in recall and precision) of AK retrieval between the two ontologies.

The primary experimental goals are:

• (A) evaluate the AK retrieval efficiency of an ontology built based on
expected AK needs and an ontology built based on actual AK needs.

• (B) evaluate the AK retrieval effectiveness of an ontology built based on
expected AK needs and an ontology built based on actual AK needs.

The experiment took place during a software architecture course given at the
University of Amsterdam. This course is part of a professional software engineer-
ing master programme. The experiment was advocated to students during one of
the final lectures as a voluntary extracurricular activity, and participation did not
affect their course grades. In total 49 students participated in the experiment.

7.2.1 Experiment Materials

We used a file-based SA document for constructing the ontology-based documen-
tation. This file-based SA document is the main deliverable of one team of 5
students in the software architecture course.

The SA document describes the architecture of a social network system for soft-
ware developers that can answer queries of individual software developers and
analyse the development community. Several students acted as stakeholders with
specific concerns and requirements for the system. Students in the architect role
had to design the system such that it addresses the concerns and requirements.

The SA document is written in English, consists of 39 pages, 16 (mostly UML) di-
agrams, 528 paragraphs, and 10.874 words. The AK in this document is organised
by a table of contents with 26 (sub)sections. The document has a view-based AK
organisation, containing a logical & implementation view and deployment view,
following the architecture description principles of Bass et al. in [9] (advocated
as textbook for the course), as well as [57, 2].

The content of the SA document was imported as wikipages in ArchiMind by
following the process described in Section 4.3. AK elements and relationships
between AK elements described in wikipage content were subsequently annotated
using the two ontologies (expected-needs and actual-needs ontology) introduced
in the next subsections.

124

7.2. AK RETRIEVAL EXPERIMENT

Ontology Design Criteria

We followed design criteria for knowledge sharing ontologies, proposed by Gru-
ber in [42], when constructing the two ontology used in the experiment. These
criteria aim for construction of clear and extendible ontologies that are suitable
for sharing knowledge in different applications.

Design criterion 1) on ’Clarity’ states that ontology constructs should be clear
and objective, e.g., supported by natural language descriptions to specify their
meaning.

Design criterion 2) on ’Coherence’ states that an ontology should be logically
consistent, i.e., that its constructs and axioms do not contradict each other.

Design criterion 3) on ’Extendibility’ states that ontology extensions should be
anticipated to support future tasks, and not require revision of existing ontology
constructs.

Design criterion 4) on ’minimal encoding bias’ states that the definition of con-
cepts should not depend on a particular encoding, implementation, or notation,
because this restricts ontology use to specific programs and tools. Our use of
ontology class ’Wikipage’, for storing SA document content in ArchiMind, is a
form of encoding bias.

Design criterion 5) on ’minimal ontological commitment’ states that an ontology
should model a domain using the minimal set of constructs and claims necessary
for its knowledge sharing activities. This allows more freedom when extending
and instantiating the ontology in different and specialized domains.

Expected-needs Ontology

We used the file-based SA document to construct an ontology for organising and
indexing its AK in ontology-based documentation. We refer to this ontology as
an ’expected-needs ontology’ because it was constructed based on the AK needs
that the document writers expected document users to have. The expected-needs
ontology is depicted in Figure 7.1 (without grey elements).

The 5 students who wrote the SA document knew that their architecture would
be reviewed by the course staff for grading, and reviewed by other students as
part of an assignment. The document writers expected architectural review by
document users, and they understood that the AK needed for these review tasks
should be recorded in their SA document. Similarly, the two researchers that
built the ontology knew that the SA document was written with architectural

125

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

Requirement Architecture

Diagram
is modeled in ->

<- depends on ->

realized by -> <- results in

<- satisfies

<- is about

<- models

Stakeholder

concerned about ->

<- is concern of

<- communicates with ->

View
<- presents presented in ->

Wikipage

<Wikipage> contains knowledge about

knowledge is located in <Wikipage>

Design issue

comprises of ->

<- part of

Option

Scenario

Assumption

supports

assumes

Commu-

nicates

with

<- hosts hosted by ->

gathers data from

gathers data from
stores data in

API

has alternative ->

<- part of

comprises of ->

addressed by->

related to

<- provided by

<- offered by offers ->

provides ->

results in ->

Legend:
Inheritence

 relationship
Class

Semantic

relationship
= = =

Elements specific to

actual-needs ontology
=

namename
name name

Layer Component

Behavior

Server

Data Store Tool Type Pattern

Functional Requirement

Non-functional Requirement

Concern

Figure 7.1: Expected-needs ontology (without grey elements) and actual-needs
ontology (all elements)

review (by course staff and students) in mind. The researchers and the document
authors however did not know the exact AK needs and actual questions that had
to be answered during review.

The expected-needs ontology employed in the experiment was constructed based
on the AK organisation of the file-based SA document, using the table of contents,
views, tables, diagrams, lists of AK elements, and boldface headers, which make
explicit where different types of AK and relationships between AK are recorded.

126

7.2. AK RETRIEVAL EXPERIMENT

Two researchers collaborated to identify AK concepts and relationships between
AK based on the available AK organisation and their understanding of SA con-
cepts.

For example, the table of contents in the SA document has subsections "design
rationale", "assumptions", and "scenarios", which makes it explicit where design
rationale is recorded. Boldface text and table column headers made design op-
tions explicit in the content of these sections. Based on this AK organisation we
modelled class ’Design issue’, ’Option’, ’Assumption’, and ’Scenario’, as well as
relationships ’assumes’ and ’supports’ in the expected-needs ontology, as depicted
in Figure 7.1. Various UML diagrams made elements of the architectural solution
design explicit, e.g., components and layers, which were modelled as subclasses
of ’Architecture’ in the ontology. In [51] a similar process was used to derive a
domain ontology, during which AK elements were annotated in SA document
content.

We followed the five design criteria, introduced in Section 7.2.1, whilst construct-
ing the expected-needs ontology. Most notably, we modelled class ’Option’, ’As-
sumption’, and ’Scenario’, instead of a single class ’Decision’, when considering
design criterion 3. This allows for an extended definition of design rationale and
supports future associated tasks, e.g., extensive evaluation of design rationale,
without having to revise the ontology.

Actual-needs Ontology

In [76] Nord et al. provide a number of questions, organised in question sets,
to review architecture documentation as part of an SEI architectural review ap-
proach. 50 of the 127 SEI questions could be fully or partially answered from the
SA document used in the experiment.

We used the AK needs expressed in these 50 SEI questions to build the actual-
needs ontology. We identified AK types and relationships between AK in the
SEI questions, and added these AK types and relationships to the actual-needs
ontology if they were not yet present in the expected-needs ontology. This aims
to support the AK needs of document users (experiment participants) when they
apply the SEI architectural review approach.

For example, we added relationships ’provides’, ’offers’, and class ’Pattern’ to
support document users in answering SEI questions about software development
activities. We also added an ontology class ‘Concern’ to support SEI questions
for reviewing the documentation of stakeholders, concerns, and conformance to
ISO/IEC 42010 [2].

127

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

The actual-needs ontology extends the expected-needs ontology. We chose for
ontology extension, instead of building another ontology from scratch, because
this allows us to investigate how the addition of specific ontology constructs to
support AK needs influences AK retrieval. The added ontology constructs are
marked grey in Figure 7.1.

The above process is in part similar to that in the ’typical question’ approach to
ontology engineering for software architecture documentation, which is described
in Chapter 5 and [26]. In [26], questions that SA document users ask during their
daily tasks, i.e., their ’typical questions’ that represent their AK needs, are used
to construct an ontology that supports the AK needs of document users.

We again used the ontology design criteria by Gruber [42] (see Section 7.2.1).
For example, several of the SEI questions that review the support for software
development activities required retrieval of implementation units and develop-
ment dependencies. We however decided not to model implementation units and
development dependencies as AK types and relationships in the ontology because
this introduces a lot of ontological commitment (design criterion 5).

Several SEI questions for reviewing the documentation of stakeholders aim to
locate stakeholder concerns in the SA document content, which is stored in
wikipages in ArchiMind. We however decided to not add more relationships to
and from class ’Wikipage’ because Wikipage is application specific and introduces
encoding bias (design criterion 4).

We added relationship ’addressed by’, between class ’Requirement’ and ’Design
issue’, as well as relationship ’results in’, between class ’Requirement’ and ’Archi-
tecture’ in the actual-needs ontology. This supports SEI questions for reviewing
the identification of requirements and design decisions. The added relationships
are more specific than the existing relationships in the expected-needs ontology,
and this adheres to design criterion 1) clarity.

Experiment Questions

We selected 5 SEI questions which are representative of the AK needs in the
50 SEI questions that were used to build the actual-needs ontology. These 5
SEI question are used as experiment questions to test and compare AK retrieval
efficiency and effectiveness between the two ontologies. We used several criteria
to select the 5 experiment questions from the 50 SEI questions.

Firstly, the experiment questions must be answerable from the SA documentation
used in the experiment. Secondly, the experiment questions must have answers
that can be quantitatively assessed, i.e., such that evaluators do not have to

128

7.2. AK RETRIEVAL EXPERIMENT

subjectively judge whether the answer to an open-ended question is either correct
or incorrect. Thirdly, selected experiment questions should be representative of
multiple SEI questions, to cover a large part of the SEI architectural review
approach. We finally selected the following questions:

1: List ten development dependencies between implementation units.

2: Which implementation units and decisions are explicitly related to require-
ment ’Security’?

3: Which architectural patterns are described in the architecture?

4: Which functional requirements are related to non-functional requirement
’Compatibility’?

5: Find ten wikipages in which the concerns of the stakeholders are addressed
(not just listed).

The experiment questions cover several aspects of the SEI architectural review
approach. Question 1 reviews the support for software development in an SA
document. Question 2 reviews the support for comprehensive architectural eval-
uation, software development, and identification of requirements and decisions
in an SA document. Question 3 reviews the support for software development,
and question 4 reviews the support for identification of requirements and design
decisions. Question 5 reviews conformance to ISO/IEC 42010, support for com-
prehensive architectural evaluation, and reviews whether important stakeholders
and concerns are captured.

We estimated that it was not acceptable for all student participants to spend more
than 45 minutes on the experiment. Therefore we limited the number of answers
for experiment questions 1 and 5 to ten, and instantiated the requirements that
have to be retrieved in questions 2 and 4. The original SEI questions require
complete AK retrieval and thus more time. Question 3 is a shorter version of an
SEI question.

7.2.2 Experiment Hypothesis

We formulate the following alternative hypotheses for experimental goals A and
B specified in Section 7.2;

H1A = The use of the actual-needs ontology for answering experiment questions
results in higher time-efficiency than the use of the expected-needs ontology.

H1B = The use of the actual-needs ontology for answering experiment questions
results in higher effectiveness than the use of the expected-needs ontology.

129

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

The null hypotheses state that there is no difference in efficiency and effectiveness
between the use of the two ontologies.

In the experiment we used one independent variable (or ‘predictor variable’)
with two levels, namely the expected-needs and the actual-needs ontology. Two
dependent variables (or ‘response variables’) are used in the experiment. Time is
used as a measure of efficiency. The harmonic mean of precision and recall, the F1
score, introduced by van Rijsbergen in [114], is used for measuring effectiveness.
See Section 6.1.4 in previous chapter for an explanation of the F1 score.

The students that wrote the SA document also participated in the experiment.
Their answers to the experiment questions were only used to verify the relevancy
of items, or ‘ground truth’, when calculating precision and recall.

7.2.3 Experiment Procedure

A ten-minute introduction to ontology-based SA documentation was given to par-
ticipants during the final lecture of the software architecture course. A researcher
explained the functions and GUI of ArchiMind using a graphical overview in pre-
sentation slides. The participants also received a printed form with a graphical
overview of ArchiMind’s GUI and an explanation of its functionality.

The participants received another printed form which depicted the ontology they
had to use. This form also instructed participants: "Please try to simulate your
behavior in normal work and studies: balance between time-efficiency and correct
answers.". This instruction was given to encourage participants to perform the
experiment seriously and answer the questions as time-effectively as possible.

We handed out two versions of the printed experiment instructions in random or-
der. In one version of the instructions we asked participants to navigate to a URL
which hosted ArchiMind with the expected-needs ontology. The other version led
participants to a URL which hosted ArchiMind with the actual-needs ontology.
These URLs also hosted a web-based form which listed the questions, input boxes
for answers, and the expected format of answers. The experiment took place in
two classrooms with PCs containing the same hardware and operating system
image.

Before the start of the experiment we asked each participant: "How many years
of working experience in IT industry do you have?". Participants reported an
average of 3.92 years experience in IT industry. Participants using the expected-
needs ontology have 4.78 years experience on average and participants using
the actual-needs ontology reported 2.87 years of experience on average. Two
participants using the expected-needs ontology were outliers with 16 and 30 years

130

7.2. AK RETRIEVAL EXPERIMENT

of experience, which explains the large difference in average years of experience
between the two groups.

Table 7.1: Time-Efficiency (Seconds), Effectiveness (F1 Score), and Statistical
Test Results in Experiment

Ex-
peri-
ment
ques-
tion

Metric
(for
each
table
row)

Av-
erage
expect-
ed-
needs

Av-
erage
actual-
needs

Differ-
ence

p-
value
test
re-
sults

Num-
ber of
mea-
sure-
ments

Effect
size r

1 Seconds 1094 1278 184 0.26102 40 0.18
F1score 0.22 0.32 0.10 0.34867 43 0.14

2 Seconds 349 376 27 0.53151 36 0.10
F1score 0.72 0.63 0.09 0.11478 38 0.26

3 Seconds 246 117 129 0.00082 30 0.61
F1score 0.24 0.79 0.56 0.00010 34 0.67

4 Seconds 290 229 61 0.39308 27 0.16
F1score 0.08 0.75 0.67 0.00003 33 0.73

5 Seconds 448 366 82 0.41236 24 0.17
F1score 0.72 0.60 0.12 0.23968 29 0.22

7.2.4 Experiment Test Results

Using the Shapiro-Wilk and Kolmogorov-Smirnov tests, we found that the ex-
periment measurements were not normally distributed. Therefore we applied
the non-parametric Mann-Whitney-Wilcoxon (MWW) test to the experiment
measurements. Table 7.1 reports the average efficiency and effectiveness mea-
surements, the p-values for one-tailed MWW tests (corrected for ties), and effect
size per question.

12 participants encountered errors in ArchiMind whilst answering questions (the
database server could not handle 49 concurrent users). We excluded measure-
ments for these questions. In some cases we could include the F1 scores of answers
in our measurements because participants lost time due to an error, but could
still continue to give an answer. This results in an unpaired number of mea-
surements (see second-to-last column of Table 7.1) between the control and test
group, however, the MWW test allows testing of unpaired measurements.

Column ‘p-value test results’ in Table 7.1 contains the p-values for one-tailed

131

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

MWW test results on efficiency for each row with ’Seconds’ in column ’Met-
ric’. Table 7.1 shows that the difference in AK retrieval efficiency between
the expected-needs and actual-needs ontology is statistically insignificant at the
p=0.05 level for all experiment questions, except for question 3. Consequently,
we only reject the null hypothesis H0A and accept the alternative hypothesis
H1A for question 3. Most participants that used the expected-needs ontology
quickly gave up searching without finding answers to question 4. This explains
the insignificant difference in efficiency between the ontologies for question 4.

Table 7.1 shows that the difference in AK retrieval effectiveness (rows with
“F1score”) between the expected-needs and actual-needs ontology is statistically
significant at the p=0.05 level for experiment questions 3 and 4. Consequently,
we reject the null hypothesis H0B and accept the alternative hypothesis H1B for
questions 3 and 4.

7.3 AK Organisation and AK Retrieval

In this section we analyse the experiment results. The actual-needs ontology
provided significantly higher AK retrieval efficiency and effectiveness than the
expected-needs ontology for experiment questions 3 and 4. The only intended
(or ’designed’) difference in the experiment materials was between the AK or-
ganisations provided by the two ontologies. We explain the differences in AK
retrieval efficiency and effectiveness by comparing the difference in AK organisa-
tion that the two ontologies provided.

In Section 7.3.1 we analyse which ontology-based AK organisation supported
participants in finding the AK and relationships between AK for each experiment
question. We analyse the usage of supporting AK organisation from the search
actions of participants in Section 7.3.2 and verify that this usage leads to efficient
and effective AK retrieval. Section 7.3.3 describes how the AK retrieval efficiency
and effectiveness of participants was affected by the supporting AK organisation
for each experiment question and by different ontology constructs.

7.3.1 Fitting AK Organisation

The ontology-based documentation tested in the experiment is organised by on-
tology classes and relationships between classes. Figure 7.2 depicts the ontology-
based AK organisation that provided one or more paths to the answers for each
experiment question, i.e., the ontology classes with AK instances and the re-

132

7.3. AK ORGANISATION AND AK RETRIEVAL

Question 2: Which implementation units and decisions are explicitly related to requirement 'Security'?

Question 3: Which architectural patterns are described in the architecture?

Question 4: Which functional requirements are related to non-functional requirement 'Compatibility'?

Question 5: Find ten (10) Wikipages in which the concerns of the stakeholders are addressed (not just listed).

Question 1: List ten (10) development dependencies between implementation units.

Legend

class

class

RequirementStakeholder
concerned about ->

<- is concern of

Concern

Functional Requirement Requirement

Non-functional Requirement related to

Wikipage

Pattern Wikipage
contains knowledge about ->

<- knowledge is located in

<- contains knowledge about

knowledge is located in->

Wikipage
contains knowledge about ->

<- knowledge is located in

Wikipage
<- contains knowledge about

knowledge is located in ->
Architecture

Layer Component Behavior
comprises of -><- part of

Commu-

nicates

with

Server

Data Store

<- hosts

hosted by ->

Tool Type

gathers data from ->

<- gathers data from

<- stores data in

API

<- part of

comprises of ->

<- provided by

<- offered by offers ->

provides ->

Wikipage

contains knowledge about ->

<- knowledge is located in
Requirement Architecture

realized by ->

<- satisfies
-property: decision_issue

Design issue

addressed by->

results in ->

class

class Relationship ->Relationship ->

Relationship ->Relationship ->

Ontology elements in both

expected-needs and

actual-needs ontology

fitting AK organisationnon-fitting AK organisation

Ontology elements only in

actual-needs ontology

=

=

<- depends on ->

Figure 7.2: Ontology-based AK organisation that provided paths to answers for
experiment questions

133

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

lationships between classes that can be used to navigate to AK instances and
answers.

Some of the nodes on a path to the answer explicitly relate to the AK needs in the
question asked. For example, experiment question 4 “Which functional require-
ments are related to non-functional requirement ’Compatibility’?”, specifies that
instances of AK types ’functional requirement’ and ’non-functional requirement’
have to be found. Both the actual-needs and expected-needs AK organisation in
Figure 7.2 contain classes ’Functional Requirement’ and ’Non-functional Require-
ment’ which relate to the two AK types in question 4, and these classes can be
used to find a path to answers for question 4.

Experiment question 4 also specifies a relationship ’related to’ between require-
ments, which is not supported in the expected-needs AK organisation. Partici-
pants can still identify the relationships between requirements in the content of
wikipages, from properties of class Requirement, or by deriving the relationships
via transitive or symmetric properties of other ontology relationships to and from
requirements, e.g., ’depends on’, ’is concern of ’, and ’realized by’. The AK organ-
isation provided by the actual-needs ontology additionally contains relationship
’related to’, which explicitly matches ’related to’ in experiment question 4 and
provides a direct path to its answers.

We term the elements in the ontology-based AK organisation that explicitly refer
to the AK needs in the question asked, and provide a direct path to its answer(s),
as "fitting AK organisation". We adopt the specific term "fitting AK organisation"
and its definition because there may be other forms of support that an ontology-
based AK organisation provides for AK needs in questions. Ontology classes and
relationships that provided fitting AK organisation for AK needs in an experiment
question are surrounded by boxes filled with green diagonal lines in Figure 7.2.

7.3.2 Usage of Fitting AK Organisation

There are various (confounding) factors that may have influenced the efficiency
and effectiveness of AK retrieval in the experiment. For example, participants
could find answers by keyword searching and reading plain text stored in wiki-
pages, without making use of the fitting AK organisation provided by the ontolo-
gies. In this section we verify that the usage of fitting AK organisation influences
the efficiency and effectiveness of AK retrieval.

The verification approach in this section is largely the same as the approach
reported in previous chapter in Section 6.2.2. Please see Section 6.2.2 for a more
detailed explanation of the verification approach.

134

7.3. AK ORGANISATION AND AK RETRIEVAL

We quantified the usage of AK organisation from over 3,000 AK retrieval ac-
tions of participants that were automatically logged during the experiment. Each
logged search action is time-stamped and contains the name of the search action
(e.g., ’keyword search’ and ’class navigation’), the AK organisation that was used
(e.g. class ’Requirement’), and the names of visited AK instances or keyword
search terms.

We measured the use of fitting AK organisation if 1) the fitting AK organisation
appeared on the screen of a participant for 3 seconds or more, and 2) the par-
ticipant navigated to answers by following the fitting AK organisation or gave
answers based on the fitting AK organisation shown on screen. We evaluated
these criteria by looking at the properties of the logged search actions, their
time-stamp, and by re-enacting the logged search actions in ArchiMind.

We measured usage of the fitting AK organisation based on the ontology classes
and relationships, that provided fitting AK organisation for AK needs, depicted in
Figure 7.2. This includes the use of fitting AK organisation in wikipage content,
which was annotated based on the ontologies (see Section 4.3 for details on the
annotation mechanism).

RatioTimeFitting is introduced as a metric to represent how much fitting AK
organisation was used to answer an experiment question. RatioTimeFitting is
calculated per participant per experiment question by dividing the ’time spent
using fitting AK organisation’ by the ’total time spent searching for AK ’. Time-
effectiveness is introduced in order to represent the efficiency and effectiveness
of AK retrieval in a single metric. Time-effectiveness is calculated per answer in
the experiment by dividing the F1 score (effectiveness) by the ’total time spent
searching for AK ’ (efficiency).

To verify that the use of fitting AK organisation influences the efficiency and effec-
tiveness of AK retrieval, we test if a correlation exists between RatioTimeFitting
and Time-effectiveness. We use the following hypothesis:

H1C = There is a correlation between RatioTimeFitting and Time-effectiveness.

The null hypothesis states that there is no correlation.

Using the Kolmogorov-Smirnov test, we found that the measurements for Ratio-
TimeFitting and Time-effectiveness are not normally distributed. Therefore the
non-parametric Spearman’s rank correlation test is applied.

Application of Spearman’s rank test indicates a moderate positive correlation
(coefficient r = 0.509) between RatioTimeFitting and Time-effectiveness. Figure
6.5 depicts a similar correlation in the Océ and LaiAn experiment.

These test results are statistically significant at the p=0.01 level with a (2-sided)

135

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

P-value of 1.005−11. Consequently, we reject the null hypothesis H0C and accept
the alternative hypothesis H1C. This shows that the use of fitting AK organisa-
tion was positively correlated with the time-effectiveness of AK retrieval.

7.3.3 Fitting AK Organisation per Question

The experiment results in Table 7.1 show that there was no significant difference
in AK retrieval efficiency and effectiveness between the two ontologies for ques-
tions 1 and 2. The insignificant difference for question 1 can be explained by the
lack of fitting AK organisation in both ontologies, as shown in Figure 7.2. The
actual-needs ontology contained four additional relationships that provided paths
to answers for questions 1. The names of the four relationships did however not
make it explicit to users where they could find development dependencies, and
were thus not fitting for question 1.

The actual-needs ontology contained two additional relationships that provided
fitting AK organisation for the AK needs in question 2. However, these two
additional relationships in the actual-needs ontology were redundant because
existing relationships ’depends on’, ’realized by’, and ’satisfies’ in both ontologies
provided the same paths to answers and were fitting for the same AK needs
in question 2. The actual-needs ontology thus provided redundant fitting AK
organisation for AK needs in question 2, and its use did not result in significantly
higher AK retrieval efficiency and effectiveness compared to use of the expected-
needs ontology.

The actual-needs ontology provided additional fitting organisation by means of
ontology class ’Pattern’ for AK needs in question 3 and relationship ’Related
to’ (between requirements) for AK needs in question 4, as depicted in Figure
7.2. These AK needs were not yet supported by fitting AK organisation in the
expected-needs ontology. Consequently, the AK retrieval efficiency and effec-
tiveness of the actual-needs ontology was significantly higher than that of the
expected-needs ontology for question 3, and AK retrieval effectiveness was signif-
icantly improved for question 4. This evidence also shows that a single class or
relationship can be added to an ontology to provide fitting organisation for AK
needs and thereby improve the time-effectiveness of AK retrieval.

The actual-needs ontology contains an additional class ’Concern’, which provided
fitting AK organisation for AK needs in question 5. However, the expected-
needs ontology already provided fitting AK organisation to support participants
in finding the concerns for question 5, namely, via relationships ’is concern of ’ and
’concerned about’. Consequently, the AK retrieval efficiency and effectiveness of
the actual-needs ontology was not significantly higher than that of the expected-

136

7.4. DISCUSSION

needs ontology. Adding fitting AK organisation that is redundant to existing
fitting AK organisation thus did not help to improve AK retrieval efficiency and
effectiveness.

7.4 Discussion

We built the expected-needs ontology based on the AK organisation of the SA
document that was used in the experiment. The SA document contained all the
AK needed by participants in the experiment because we only asked questions
that could be answered from the SA document content. Moreover, the document
authors anticipated the AK needs for architectural review, and architectural re-
view questions were asked in the experiment. As such the SA document con-
tained all AK needed in the experiment, which could have been modelled in the
expected-needs ontology to provide fitting AK organisation.

However, certain types of AK and relationships between AK were not very explicit
in the SA document, and difficult to identify without knowing if this AK was
needed by document users. The AK in the SA document was organised to support
the anticipated AK needs of its users, yet it did not clearly specify these AK needs.
Building the expected-needs ontology thus required reverse engineering of the AK
needs for which the SA document was written.

We noticed that the relationships between AK were especially hard to identify
because they were not always explicitly described in the SA document. For
example, the table of contents and boldface headers made it very explicit where
decisions were recorded, yet their relationships with the requirements were less
explicitly listed in the text inside the sections. This issue might be addressed by
assuming that certain relationships between AK exist, instead of identifying and
modeling the relationships between AK that are very explicit in the SA document.

We constructed the actual-needs ontology using the coding and ontology con-
struction step in the ’typical question’ approach described in Chapter 5. In
Chapter 5 we suggest that the questions of users help AK ontology construction
because they clearly identify the required types of AK and relationships between
AK. This suggestion is supported by the study in this chapter since we were able
to identify AK types and relationships between AK from the SEI questions to
construct the actual-needs ontology.

The actual-needs ontology however did not provide fitting AK organisation for
all AK needs in the experiment, even though AK needs were identified from
SEI questions. This lack of fitting AK organisation curtailed the efficiency and
effectiveness of AK retrieval. The correlation found in Section 7.3.2 suggests that

137

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

participants would have retrieved AK more efficiently and effectively if additional
fitting AK organisation was provided to support their AK needs.

We found that the use of the ontology design criteria (see Section 7.2.1) restricted
the modelling of the identified AK needs. The design criteria helped to construct a
clear and extendible ontology for knowledge sharing across different applications.
For example, based on these criteria we decided to comprehensively model design
rationale to support future AK retrieval tasks (see Section 7.2.1). We also decided
not to model certain constructs in the actual-needs ontology because they affected
ontological commitment and encoding bias (see Section 7.2.1). This allows for
more freedom to use the ontology in different domains and applications.

However, these decisions, made based on the ontology design criteria, restricted
modelling of fitting AK organisation to support AK needs, and this in turn neg-
atively affected the AK retrieval efficiency and effectiveness of participants. Use
of the ontology design criteria was thus traded off against lower efficiency and
effectiveness of AK retrieval.

Above findings can be used in practice to create ontology-based SA documenta-
tion from which AK can be retrieved efficiently and effectively. In [36] Falessi
et al. investigated whether an accurate understanding of the value of AK for
the activities of document users can be used to only document valuable AK, and
thereby reduce the costs of producing documentation. Conversely, we investigated
whether an accurate understanding of the AK needs of document users can be
used to improve AK retrieval from documentation, and thereby reduce time-costs
and increase the effectiveness of AK retrieval when consuming documentation.

7.5 Threats to Validity

Internal Validity

The file-based SA documentation which was used as input for the experiment
was written by 5 students, of which 4 participated in the experiment. We ex-
cluded the answers of these document authors from statistical testing because
their prior knowledge about the SA documentation would bias the experiment
results. Instead we used their answers as a ’gold standard’ (i.e. ’ground truth’)
to verify that our evaluation of precision and recall was correct.

A group of 5 students who acted as stakeholders in the SA course answered several
SEI questions from the file-based SA document as part of an assignment prior to
the experiment. The AK needs in these questions partially overlaps with the AK

138

7.6. CONCLUSIONS

needs in experiment questions, which means that these 5 students may have had
prior knowledge about the answers to questions in the experiment. This threat
to validity was mitigated by equal distribution of the 4 stakeholder-students that
participated in the experiment across the test and control group: two students
used the expected-needs ontology and two used the actual-needs ontology.

Two students registered as ’anonymous’ for the experiment, and may have been
part of the 5 stakeholders or 5 document authors discussed above. They however
retrieved AK with average efficiency and effectiveness, which leads us to believe
they do not have prior knowledge and are not part of the document authors or
stakeholders discussed above.

External Validity

The specific set of questions from the SEI architectural review approach that
were used in the experiment limits generalization of the experiment results and
findings. The SA documentation used in the experiment was written by stu-
dents that used guidelines in [57, 9, 2] for view-based architecture description.
The experiment documentation can be generalized to documentation practice in
industry to the extent that industry practitioners also make use of UML and
view-based architecture descriptions.

The ArchiMind semantic wiki tool is not specific to the ontologies and SA doc-
umentation in the experiment, and can be used for any type of ontology and
documentation. The findings in this work can to a certain extent be generalized
to ontology-based documentation approaches that use a semantic wiki.

7.6 Conclusions

It is important that AK is quickly and correctly retrieved from SA documenta-
tion, however, SA documentation often does not support its users in retrieving all
the AK that they need for their tasks. In this chapter we investigated whether
document users retrieve AK more efficiently and effectively when they use an
ontology-based document organisation that is constructed from an improved un-
derstanding of their AK needs. We conducted an experiment to compare AK
retrieval using an ontology built from the expected AK needs of document users
and an ontology built from their actual AK needs.

The use of the actual-needs ontology was significantly more efficient and effec-
tive for answering one experiment question, and significantly more effective for

139

CHAPTER 7. SUPPORTING ARCHITECTURE DOCUMENTATION: A
COMPARISON OF ONTOLOGIES FOR KNOWLEDGE RETRIEVAL

answering another experiment question, compared to the use of the expected-
needs ontology. Part of the ontology-based AK organisation was fitting for AK
retrieval; it explicitly denoted the AK types and relationships between AK that
participants needed to retrieve. We found that the use of AK organisation that
was fitting for AK needs in a question had a significant correlation with the ef-
ficiency and effectiveness of answering that question. The actual-needs ontology
provided more fitting AK organisation for the AK needs in two questions, and
its users answered one of the two questions more efficiently and effectively and
the other question more effectively than users of the expected-needs ontology.

The experiment results show that a better support for the AK needs of ontology-
based documentation users improves the efficiency and effectiveness when the
users retrieve the AK that they need. The results highlight the importance of
accurately understanding the AK needs of SA documentation users; it allows
document writers to organise AK such that document users can efficiently and
effectively retrieve the AK that they need.

Not all AK needs were supported by fitting AK organisation, and this curtailed
the efficiency and effectiveness of AK retrieval. This was caused by the use of
criteria for designing clear and extendible knowledge sharing ontologies, which
limited the amount of fitting AK organisation that was added to support AK
needs. The use of the ontology design criteria was traded off against the efficiency
and effectiveness of AK retrieval. In future studies we plan to investigate how
fitting AK organisation can be provided for more AK needs of document users,
whilst using design criteria for knowledge sharing ontologies.

140

8
Conclusions

In this thesis we investigated whether the efficiency and effectiveness of AK re-
trieval can be improved using ontology-based documentation. We first studied how
AK is retrieved from file-based documentation in practice and theory. We then
introduced an ontology-based approach for retrieving AK from SA documentation.
Next, we proposed and applied an approach to build an ontology for SA documen-
tation in a software project. We conducted experiments to compare the efficiency
and effectiveness of AK retrieval between file-based and ontology-based documen-
tation. Finally we compared AK retrieval between two ontologies in ontology-
based documentation. In this chapter we revisit the research questions, reflect on
contributions, and discuss future work.

8.1 Contributions

Even a perfect SA is essentially useless if its AK cannot be found and understood
[9, 21]. SA documentation should be written to satisfy the needs of its users, and
organised such that users can quickly find the AK they need and answer their
questions [21, 77]. It is common practice to capture AK in file-based documents
[80], however, various challenges inhibit efficient and effective AK retrieval from
these documents. Recent studies provide evidence that the use of ontology-based
documentation improves AK extraction [51] and AK understanding [68] compared
to file-based documentation.

Our main Research Question (RQ) is whether we can improve the efficiency and
effectiveness of AK retrieval using an ontology-based documentation approach.
In previous chapters we investigated RQ1 to RQ5. We summarize their answers
in this chapter and discuss how together they provide an answer to the main RQ.

141

CHAPTER 8. CONCLUSIONS

In Chapter 2 and 3 we investigated RQ1; "how do software professionals retrieve
AK from file-based documentation?". In Chapter 2 we used protocol analysis to
investigate the search behaviour of professionals in industry and we identified
four search strategies. We found that professionals experience search uncertainty
and AK retrieval challenges when they cannot follow document organisation that
relates to the questions they need to answer. Use of prior knowledge helps to deal
with search uncertainty, however, it is prone to cognitive bias and often results
in inefficient and ineffective AK retrieval.

We studied literature about file-based SA documentation in Chapter 3 and iden-
tified underlying causes for missing document organisation and AK retrieval chal-
lenges. Many of the challenges that are reported by software industry profession-
als stem from the linear organisation of AK in file-based documentation. This
suggests that there is room for improving the efficiency and effectiveness of AK
retrieval practices.

We proposed an ontology-based documentation approach when investigating RQ2;
"How can an ontology be used for retrieving AK from documentation?", in chap-
ter 4. We first discussed how ontologies can be used for organising and retrieving
AK in SA documentation. We then described a lightweight software ontology
and semantic wiki that are used for AK retrieval in the proposed ontology-based
approach. The identified AK retrieval challenges in file-based documentation can
be addressed by the ontology-based approach.

We proposed an ontology engineering approach when investigating RQ3; "How
to construct an ontology for SA documentation in a software project context?",
in Chapter 5. We conducted an exploratory case study to evaluate how well
our approach works to construct an ontology, given the diversity of AK users,
domain complexity, and other contextual factors in a software project. Industry
practitioners evaluated the constructed ontology as useful for retrieving AK.

In Chapter 6 we investigated RQ4; "How do file-based and ontology-based docu-
mentation influence the efficiency and effectiveness of AK retrieval?". We con-
ducted an experiment in two companies during which software professionals an-
swered questions about AK. Use of ontology-based documentation was signifi-
cantly more efficient and effective than use of file-based documentation.

Part of the available AK organisation was fitting for AK retrieval; it explicitly
denoted the AK types and relationships between AK specified in the experiment
questions. We analysed search actions of professionals and found that the usage
of fitting AK organisation has a positive correlation with the efficiency and ef-
fectiveness of AK retrieval. This correlation explains the difference in efficiency
and effectiveness between the two documentation approaches.

142

8.1. CONTRIBUTIONS

We conducted a questionnaire among industry professionals, which shows a mostly
positive evaluation of ontology-based documentation. A coarse cost-benefit esti-
mation indicates a positive return on investment when replacing file-based with
ontology-based documentation in the studied projects.

In Chapter 7 we investigated RQ5; "How do different ontology-based AK organi-
sations influence the efficiency and effectiveness of AK retrieval?". We compared
AK retrieval from an ontology built based on the expected AK needs of docu-
ment users, and from an ontology built based on the actual AK needs. The
results show that a better understanding of AK needs allows for the construction
of ontologies that provide more fitting AK organisation, and thereby improve AK
retrieval efficiency and effectiveness.

Main Research Question

The findings in this thesis support a confirmatory answer to the main RQ; "Can
we improve AK retrieval efficiency and effectiveness using ontology-based docu-
mentation?".

We phrase the findings using the same terminology as the main RQ, to summarize
how the main RQ is answered.

• AK retrieval efficiency and effectiveness can be improved in existing file-
based documentation practice in industry (RQ1).

• Ontology-based documentation can address challenges that inhibit efficient
and effective AK retrieval in existing file-based documentation practice
(RQ2).

• An ontology that is useful for retrieving AK in ontology-based documenta-
tion can be built in a software project (RQ3).

• The use of ontology-based documentation can improve AK retrieval effi-
ciency and effectiveness compared to the use of file-based documentation in
industry practice (RQ4).

• AK retrieval efficiency and effectiveness in ontology-based documentation
can be improved by using ontology-based AK organisation that is built
based on a better understanding of AK needs (RQ5).

Though the results of this study indicate that ontology-based SA documentation
holds a promising future, there are still many challenges to overcome. More
research is needed to replicate and further generalize the findings to different
types of software projects, and to explore open questions and future work.

143

CHAPTER 8. CONCLUSIONS

8.2 Innovative Aspects

The research in this thesis has several innovative aspects:

• Use of Protocol Analysis to identify and evaluate search strategies and
heuristics during AK search in file-based documentation.

• Introduction of an ontology-based SA documentation approach that uses a
semantic wiki.

• Introduction of an approach that uses Grounded Theory to construct on-
tologies for SA documentation in a software project context.

• Experimental evaluation and comparison of AK retrieval from ontology-
based and file-based documentation.

• Quantification of AK organisation usage during AK retrieval from ontology-
based and file-based documentation.

• A cost-benefit estimation of adopting ontology-based documentation in two
software projects.

• Experimental evaluation and comparison of two ontologies for AK retrieval.

8.3 Discussion and Future Work

In the previous section we discussed how the findings in this thesis answer the RQs
about ontology-based documentation. The findings not only provide answers to
the RQs, but also provide additional or overreaching insights as well as directions
for future research and industry practice. We discuss these insights and research
directions per theme in the following subsections.

8.3.1 Organising AK for Efficient and Effective Retrieval

We found that professionals experience search uncertainty when the organisation
of AK in documents does not relate to their questions about AK. They become
uncertain about the completeness of answers when it is not clear from document
and section titles where relevant AK is located. Removing uncertainty by reading
all document content is time-consuming, and spelling variations, synonyms, and
acronyms make keyword searching error-prone. Professionals that searched under
uncertainty often retrieved AK inefficiently and ineffectively.

144

8.3. DISCUSSION AND FUTURE WORK

We also identified AK organisation that was fitting for AK retrieval; it explicitly
denoted the AK types and relationships between AK specified in the questions
that professionals had to answer. Use of fitting AK organisation positively cor-
related with the efficiency and effectiveness of AK retrieval. This suggests that
AK retrieval from existing SA documentation in industry can be improved by
providing more fitting AK organisation for the questions of document users.

In this thesis we identified AK organisation that is fitting for answering well-
defined questions in file-based and ontology-based documentation. There might
be other forms of fitting AK organisation, e.g, in other types of SA documen-
tation, and for AK retrieval tasks without well-defined questions, e.g., learning
about SA. Given the potential benefits for AK retrieval, we encourage empiri-
cal identification of fitting AK organisation in other documentation types, e.g.,
hypertext-based documentation in wikis, and for various AK retrieval tasks.

8.3.2 Understanding the AK Needs of Document Users

Understanding the AK needs of document users allows document authors to
include and organise AK such that users can quickly find the AK they need, and
this increases the value of SA documentation [21]. We found that an improved
understanding of AK needs can be used to build a more fitting AK organisation
and thereby improve AK retrieval efficiency and effectiveness. In this thesis we
used several AK organisations, each based on a different understanding of the
AK needs:

• Use Cases: The lightweight software ontology was built to support use cases
that are representative of AK needs during typical activities of architects [103].
This ontology provided partially fitting AK organisation for LaiAn experiment
questions.

• Representative questions: We built an ontology based on typical questions
that represent AK needs in the Océ domain. This ontology provided largely
fitting AK organisation for other representative questions in the Océ experiment.

• Existing Documentation: The file-based documents used in the Océ and
LaiAn experiment were organised based on document authors’ understanding of
the AK needs. These documents contained partially fitting AK organisations for
experiment questions. In Chapter 7 we built an ontology based on AK needs
that we elicited from the AK organisation of a file-based SA document. This AK
organisation is representative of the AK needs that the document authors knew
or expected the document users to have. The ontology provided partially fitting
AK organisation for architectural review questions. The linear organisation of

145

CHAPTER 8. CONCLUSIONS

file-based documents in a table of contents limited the amount of fitting AK
organisation that could be included, regardless of whether the document authors
had an accurate understanding of AK needs.

•Actual questions about AK: In Chapter 7 we built another ontology based
on architectural review questions that were later answered in an experiment. The
ontology provided mostly fitting AK organisation for the review questions.

Above findings suggest that it is important to acquire an accurate understanding
of AK needs, as it results in more or less fitting AK organisation. Future work
may regard the AK needs of document users as being similar to the requirements
for a software system that has to be built. Requirements engineering is a relatively
mature discipline from which we can adopt theories, methods, and techniques to
acquire an accurate understanding of users’ AK needs. An iterative approach
can help to refine the understanding of AK needs and detect evolving AK needs.

Above findings also show that the use of different representations of AK needs
affects the accuracy of AK needs understanding. We argued that typical questions
closely represent the AK needs of users, and we could build a largely fitting
ontology-based AK organisation using typical questions. In [21] Clements et al.
suggest that it is useful for SA document writers to know what questions are being
answered by each document section. This suggests that the use of questions to
build AK organisations is valuable for future research and practice.

8.3.3 Costs and Benefits of Ontology-based Documentation

A cost-benefit estimation indicated that the adoption of ontology-based SA doc-
umentation has a positive return on investment when it replaces file-based SA
documentation in two software projects. Further reduction of the cost of cre-
ating ontology-based documentation makes it a more cost-effective alternative
compared to the use of file-based documentation in industry practice.

The time required to apply our ’typical question’ approach and create an ontology
may be reduced by automation and tool support. For example, by reusing parts of
existing ontologies, mining typical questions from meeting notes, and by applying
ontology learning algorithms.

Predefined input forms in ArchiMind, e.g., for the commonly documented prop-
erties and relationships of decisions, may reduce the cost of creating AK instances
and annotations. We implemented (but not did use) a semi-automatic annotation
mechanism in ArchiMind that matches phrases in document content to the names
of existing AK instances. The use of natural language processing, as applied in
[68], may further reduce the cost of semantic annotation.

146

8.3. DISCUSSION AND FUTURE WORK

Rule-based logic can be used to infer new AK instances and relationships between
AK in an ontology, as proposed in [44]. For example, relationships between AK
can be inferred from symmetric or transitive properties of existing relationships.

Improving the benefits of ontology-based documentation can also make it a more
cost-effective alternative. ArchiMind and other semantic wikis support personal-
isation and social collaboration within teams, and these features can be extended
with ontology support, e.g., for creating personalised views on AK. Evaluating
the benefits of combining view-based SA descriptions with an ontology-based
approach, e.g., as proposed in [99], is promising future work.

Concerns of AK users are often recorded in different chunks of document content
spread across the documentation, and this set of relevant document chunks is
different for each AK user [57, 94]. ArchiMind stores chunks of document content
in HTML, and it may be promising to investigate the recombination of chunks to
generate printable linear SA documents for specific topics, queries, tasks, views,
and concerns of AK users. Document chunks that are relevant for individual AK
user can be identified by, e.g., modelling users’ roles, tasks, and concerns in the
ontology, or by latent semantic analysis of SA documents [23].

Integration of ontology-based documentation in the software development pro-
cess, e.g., in the tools of developers, may improve access to and retrieval of
relevant AK. Ontologies are machine interpretable, and tools may be developed
to automatically generate design diagrams and source code from ontology-based
documentation. Queries and rule-based logic can be used to check for the sound-
ness, correctness, and quality of an SA, its documentation, and other knowledge,
e.g., by checking whether every architecturally significant requirement has at least
one ’satisfied by’ or ’realized by’ relationship with an AK instance in the ontology.

8.3.4 Generalization of Findings

Replication of our research can potentially help to improve the efficiency and
effectiveness of knowledge retrieval in many domains. Our evaluation is specific
to the SA domain, as it involves technical SA documentation and experienced
software professionals. However, the approaches and solutions that were evalu-
ated are to a large extent generic. We discuss three aspects of our research that
may be replicated and generalized to other domains.

Firstly, the identified search strategies, use of prior knowledge, and cognitive
biases may apply to document users outside the field of software development.
These findings do not seem specific to the software industry domain, other than
the use of technical SA documentation and the prior knowledge about software

147

CHAPTER 8. CONCLUSIONS

systems. It can be worthwhile to replicate this research in other domains to
identify and possibly improve document search practices.

Secondly, the ontology-based documentation approach that we proposed is generic.
It can use other ontologies and store other types of documentation. The Archi-
Mind semantic wiki is an adaptation of OntoWiki, which was designed as a
general-purpose semantic wiki for collaborative knowledge engineering [6].

Finally, our ontology engineering approach is largely generic. The approach uses
typical questions that documentation users ask, and these users can work in any
field. The ontologies created by the approach may be used for other purposes
besides the organisation and retrieval of documented AK.

148

9
Samenvatting

Software heeft vooruitgang in veel vakgebieden mogelijk gemaakt en heeft een
toenemend invloed op ons leven en de samenleving in zijn geheel. Software wordt
gebruikt in computers, communicatienetwerken, medische apparatuur, fabrieken,
vliegtuigen, treinen, auto’s, mobiele telefoons, huishoudapparatuur, enzovoort.
Software systemen die verkeerd ontworpen, gebouwd, of onderhouden zijn kunnen
slecht functioneren en daardoor traag, onveilig, of onbetrouwbaar worden, wat
resulteert in het verlies van informatie, tijd, geld, of levens.

Het is belangrijk om goed functionerende software te ontwikkelen. Dit is echter
niet eenvoudig; het ontwikkelen van een software systeem kan jaren werk door
honderden professionals en miljoenen regels code vereisen. In dit proefschrift doen
we onderzoek naar het verbeteren van de kennisvergaring uit de documentatie die
professionals gebruiken tijdens software ontwikkeling.

Tijdens het ontwikkelen van een groot software systeem werken meerdere profes-
sionals samen in een project. Projectmatige softwareontwikkeling wordt gepland
in iteratieve cycli en fasen, bijvoorbeeld in een requirement, ontwerp, en imple-
mentatiefase. In software projecten worden diverse documentatietypes gebruikt,
zoals documenten voor systeemontwerp en documenten voor de functionele ver-
eisten aan een systeem. Deze software documentatie is essentieel voor de com-
municatie van kennis tussen professionals, vooral als ze werken in verschillende
projectfasen, vestigingen, en tijdzones.

Eén van de eerste activiteiten in een software project is het specificeren van
de Software Architectuur (SA) van een systeem. In een SA ontwerp wordt het
systeem gedecomposeerd in componenten die met elkaar communiceren d.m.v.
interacties. Een SA ontwerp realiseert functionele en non-functionele vereisten
aan een systeem (bijvoorbeeld snelheid en betrouwbaarheid), randvoorwaarden

149

CHAPTER 9. SAMENVATTING

vanuit de technische en organisatorische omgeving, werk-verdeling, budget, plan-
ning, en hergebruik van componenten.

Het documenteren van SA dient drie doelen: het wordt gebruikt voor systeem-
analyse, voor onderwijs, en als de primaire vorm van communicatie tussen de
belanghebbenden in een software project. SA documentatie speelt niet alleen een
rol in het begin van een project, maar ook later tijdens onderhoud en verbetering
van een systeem. SA documentatie bevat Architectuur Kennis (AK). AK kan
worden omschreven als: "De geïntegreerde representatie van de software architec-
tuur van een software-intensief systeem (of familie van systemen), de beslissingen
over het architectuurontwerp, en de externe context/omgeving".

In het bedrijfsleven is het gebruikelijk om AK op te slaan in bestand-gebaseerde
documenten, zoals tekst- en diagrambestanden. Het opdelen van de inhoud van
documenten in secties en subsecties zorgt voor een organisatie van de AK in de
documenten. Een inhoudsopgave met sectietitels kan worden gebruikt als een
index tijdens het zoeken naar AK in deze organisatie.

In SA documentatie worden veel relaties tussen AK beschreven, bijvoorbeeld
tussen beslissingen, componenten, en functionele vereisten. Zo kan een enkele
beslissing al veel relaties hebben met andere AK. Een ontwikkelaar kan zich
afvragen wat de impact is van deze beslissing op de componenten en de interfaces
waar hij of zij verantwoordelijk voor is. Een architect die de beslissing evalu-
eert heeft interesse in gerelateerde (alternatieve) beslissing en vereisten. Een
kwaliteitsbewaker kan zich afvragen welke kwaliteitsattributen door de beslissing
veranderen.

Als AK en de relaties tussen AK niet zijn geïndexeerd in een documentorgani-
satie moet de AK worden gezocht in de documentinhoud binnenin secties. Het
doorlezen of met sleutelwoorden doorzoeken van documentinhoud kan echter veel
tijd kosten en foutgevoelig zijn wegens synoniemen, spelfouten, en afkorting.

Het is moeilijk om intergerelateerde AK te organiseren in de lineaire inhouds-
opgave van bestand-gebaseerde documenten op een manier dat alle document-
gebruikers worden ondersteund in het vinden van de AK waar ze behoefte aan
hebben. SA documenten hebben vaak een uniforme ’één maat past iedereen’ or-
ganisatie die weinig ondersteuning biedt voor de taken van individuele gebruikers
van AK.

Een organisatie van AK die weinig ondersteuning biedt voor de behoefte aan AK
kan er voor zorgen dat documentiegebruikers incorrecte en incomplete AK vinden
of tijd verspillen omdat ze op de verkeerde plek naar AK zoeken. Het inefficiënt
en ineffectief verkrijgen van AK uit SA documentatie is het probleem waar dit
proefschrift zich op richt.

150

We vermoeden dat het gebruik van ontologie-gebaseerde SA documentatie het
verkrijgen van AK kan verbeteren in vergelijking met het gebruik van bestands-
gebaseerde documentatie. "Een ontologie" refereert aan een formeel domeinmodel
waarin concepten en relaties worden beschreven. Een ontologie kan de AK in
SA documentatie organiseren m.b.v. klassen en relaties, en kan de betekenis
(semantiek) van AK expliciet maken waardoor documentatiegebruikers de AK en
relaties tussen AK kunnen herkennen. Een ontologie-gebaseerde AK organisatie
is niet lineair, wat documentatiegebruikers kan helpen om de intergerelateerde
AK die ze nodig hebben snel en correct te verkrijgen.

De hoofdvraag die we onderzoeken in dit proefschrift is of het gebruik van on-
tologie-gebaseerde documentatie de efficiëntie en effectiviteit van het verkrijgen
van AK kan verbeteren. We bestuderen efficiëntie door het meten van de tijd die
benodigd is om antwoord te geven op vragen die gaan over AK, en bestuderen
effectiviteit door het meten van de correctheid en compleetheid van antwoorden.

We hebben eerst onderzocht hoe professionals in het bedrijfsleven AK verkrijgen
uit bestands-gebaseerde documentatie, om zo de huidige praktijk te begrijpen en
eventuele verbeteringen te identificeren. We hebben het zoekgedrag van profes-
sionals bestudeerd en konden zo vier zoekstrategiën identificeren. Verder kwamen
we erachter dat professionals onzekerheid en uitdagingen ervaren wanneer ze tij-
dens het zoeken niet in staat zijn om een documentorganisatie te volgen die gere-
lateerd is aan de vraag die ze beantwoorden. Het gebruik van voorkennis helpt
om met onzekerheden om te gaan, maar leidt ook vaak tot vooringenomenheid,
inefficiëntie, en ineffectiviteit tijdens het zoeken naar AK.

Met behulp van literatuuronderzoek identificeerden we een aantal achterliggende
oorzaken van de uitdagingen tijdens het verkrijgen van AK uit bestands-geba-
seerde documentatie. Uitdagingen tijdens het verkrijgen van AK in het bedrijfsle-
ven kunnen deels worden herleid naar de lineaire organisatie van AK in bestands-
gebaseerde documenten. Dit suggereert dat er in de praktijk ruimte is voor het
verbeteren van de efficiëntie en effectiviteit van het verkrijgen van AK.

Verder hebben we onderzocht hoe een ontologie kan worden gebruikt voor het ver-
krijgen van AK uit documentatie. We introduceerden een ontologie-gebaseerde
documentatiemethode die gebruik maakt van een software ontologie en een se-
mantische wiki voor het organiseren en opzoeken van AK. Met de semantische
wiki kan de inhoud van bestands-gebaseerde documentatie worden opgeslagen
in webpagina’s die men kan annoteren, doorzoeken, en navigeren m.b.v. een
ontologie. Uitdagingen tijdens het verkrijgen van AK uit bestands-gebaseerde
documentatie kunnen deels worden verholpen door het gebruik van ontologie-
gebaseerde documentatie.

151

CHAPTER 9. SAMENVATTING

Vervolgens onderzochten we hoe een ontologie voor SA documentatie gebouwd
kan worden in de context van een software project. We introduceerden een me-
thode voor het bouwen van ontologieën die gebruikt maakt van typische vragen
van software professionals over AK. Met een verkennende casestudy hebben we
geëvalueerd hoe goed de methode werkt om een ontologie te bouwen in een soft-
ware project met diverse gebruikers, domein complexiteit, en andere contextuele
factoren.

Om zekerheid te krijgen dat ontologie-gebaseerde documentatie het verkrijgen
van AK kan verbeteren hebben we deze vergeleken met bestands-gebaseerde do-
cumentatie. We hebben een experiment uitgevoerd in twee bedrijven waarin
software professionals vragen over AK beantwoorden, om zo te onderzoeken hoe
het gebruik van bestands-gebaseerde en ontologie-gebaseerde documentatie de
efficiëntie en effectiviteit van het verkrijgen van AK beïnvloed. Het gebruik van
ontologie-gebaseerde documentatie was significant meer efficiënt en effectief dan
het gebruik van bestands-gebaseerde documentatie.

Een deel van beschikbare AK organisatie in het experiment was passend voor
het verkrijgen van AK; de organisatie had een expliciete beschrijving van de
types AK en relaties tussen AK die ook in de vragen in het experiment waren
beschreven. Door analyse van de zoekacties van professionals kwamen we erachter
dat het gebruik van passende AK organisatie een positieve correlatie had met de
efficiëntie en effectiviteit van het verkrijgen van AK uit bestands-gebaseerde en
ontologie-gebaseerde documentatie. De correlatie geeft een verklaring voor het
verschil in efficiëntie en effectiviteit tussen de twee vormen van documentatie.

Deelnemers in het experiment gaven via een vragenlijst een grotendeels posi-
tieve evaluatie van ontologie-gebaseerde documentatie. Een ruwe kosten-baten
schatting wijst op een positief netto resultaat wanneer de bestands-gebaseerde
documentatie zou worden vervangen door ontologie-gebaseerde documentatie in
de bestudeerde software projecten.

Om erachter te komen hoe verschillende ontologieën presteren t.o.v. elkaar
hebben we onderzocht hoe het gebruik van verschillende ontologie-gebaseerde
AK organisaties invloed heeft op de efficiëntie en effectiviteit van het verkrijgen
van AK. Door middel van een experiment hebben we onderzocht wat het verschil
is tussen het verkrijgen van AK m.b.v. een ontologie die gebouwd is op basis
van de verwachte behoefte aan AK van documentatiegebruikers, en het verkrij-
gen van AK m.b.v. een ontologie die is gebouwd op basis van de daadwerkelijke
behoefte aan AK. De resultaten laten zien dat een beter begrip van de behoefte
aan AK kan worden gebruikt om ontologieën te bouwen met meer passende AK
organisatie, waardoor de efficiëntie en effectiviteit van het verkrijgen van AK
verbeterd.

152

De bevindingen in dit proefschrift geven een bevestigend antwoord op de hoofd-
vraag: "Kunnen we de efficiëntie en effectiviteit van het verkrijgen van AK ver-
beteren door het gebruik van ontologie-gebaseerde documentatie?".

We beschrijven de bevindingen in dezelfde terminologie als de hoofdvraag, om zo
het antwoord op de hoofdvraag samen te vatten.

• De efficiëntie en effectiviteit van het verkrijgen van AK uit bestands-geba-
seerde documentatie kan worden verbeterd.

• Gebruik van ontologie-gebaseerde documentatie kan uitdagingen verhelpen
die bijdragen aan het inefficiënt en ineffectief verkrijgen van AK uit be-
stands-gebaseerde documentatie.

• Een nuttige ontologie voor het verkrijgen van AK uit ontologie-gebaseerde
documentatie kan worden gebouwd in een software project.

• Het gebruik van ontologie-gebaseerde documentatie kan de efficiëntie en
effectiviteit van het verkrijgen van AK verbeteren in vergelijking met het
gebruik van bestands-gebaseerde documentatie.

• De efficiëntie en effectiviteit van het verkrijgen van AK in ontologie-geba-
seerde documentatie kan worden verbeterd door het gebruik van ontologie-
gebaseerde AK organisatie die is gebouwd op basis van een beter begrip
van de behoefte aan AK.

De bevindingen laten zien dat het gebruik van ontologie-gebaseerde documentatie
veelbelovend is. Tevens laten de bevindingen zien hoe men verbeteringen kan
aanbrengen in bestands-gebaseerde documentatie die momenteel veel wordt ge-
bruikt in het bedrijfsleven. Er is echter meer onderzoek nodig om de bevindingen
verder te staven en generaliseren naar verschillende typen software projecten, en
om open vragen en toekomstig werk te verkennen.

153

SIKS Dissertatiereeks

====
1998
====

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations within the
Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modelling of Quality Change of
Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven Specification of
Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism
for Discrete Reallocation.

====
2000
====

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering
en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)

155

Programming Languages for Agent Communication
2000-7 Niels Peek (UU)

Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coupef (EUR)

Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI)

Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI)

Image Database Management System Design Considerations, Algorithms and Architecture
2000-11 Jonas Karlsson (CWI)

Scalable Distributed Data Structures for Database Management

====
2001
====

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models, Views
of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling
and simulation language for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments inhabited by
Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-based ontology of the
legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying
Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction between
medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)

Extensions of Statecharts with Probability, Time, and Stochastic Timing
2003-18 Levente Kocsis (UM)

Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005
====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting Application

Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in
organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools for
Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means
of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological
environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a
Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information

Retrieval
2006-27 Stefano Bocconi (CWI)

Vox Populi: generating video documentaries from semantically annotated
media repositories
2006-28 Borkur Sigurbjornsson (UVA)

Focused Information Access using XML Element Retrieval

====
2007
====

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a
Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in
Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption
and usage of broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramirez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

====
2008
====

2008-01 Katalin Boer-Sorban (EUR)
Agent-Based Simulation of Financial Markets: A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware
information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an

Artificial Intelligence Perspective
2008-07 Peter van Rosmalen (OU)

Supporting the tutor in the design and support of adaptive e-learning
2008-08 Janneke Bolt (UU)

Bayesian Networks: Aspects of Approximate Inference
2008-09 Christof van Nimwegen (UU)

The paradox of the guided user: assistance can be counter-effective
2008-10 Wauter Bosma (UT)

Discourse oriented summarization
2008-11 Vera Kartseva (VU)

Designing Controls for Network Organizations: A Value-Based Approach
2008-12 Jozsef Farkas (RUN)

A Semiotically Oriented Cognitive Model of Knowledge Representation
2008-13 Caterina Carraciolo (UVA)

Topic Driven Access to Scientific Handbooks
2008-14 Arthur van Bunningen (UT)

Context-Aware Querying; Better Answers with Less Effort
2008-15 Martijn van Otterlo (UT)

The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of

Focused Text Search
2008-20 Rex Arendsen (UVA)

Geen bericht, goed bericht. Een onderzoek naar de effecten van de
introductie van elektronisch berichtenverkeer met de overheid op de
administratieve lasten van bedrijven.

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair
using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents,
Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and
Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov
Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

====
2009
====

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations
2009-25 Alex van Ballegooij (CWI)

"RAM: Array Database Management through Relational Mapping"
2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intelligent Mobile Services
2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflection on the Web
2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models
2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-Oriented Applications
2009-30 Marcin Zukowski (CWI)

Balancing vectorized query execution with bandwidth-optimized storage
2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text
2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)

Architectural Knowledge Management: Supporting Architects and Auditors
2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In Speech?
2009-34 Inge van de Weerd (UU)

Advancing in Software Product Management: An Incremental Method
Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning
resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers (UvT)
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic
Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

====
2010
====

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know? Situational Awareness of

Co-located Teams in Multidisplay Environments
2010-05 Claudia Hauff (UT)

Predicting the Effectiveness of Queries and Retrieval Systems
2010-06 Sander Bakkes (UvT)

Rapid Adaptation of Video Game AI
2010-07 Wim Fikkert (UT)

Gesture interaction at a Distance
2010-08 Krzysztof Siewicz (UL)

Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms,
Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and
Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning,
structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically

solving Interoperability Problems
2010-33 Robin Aly (UT)

Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval
2010-34 Teduh Dirgahayu (UT)

Interaction Design in Service Compositions
2010-35 Dolf Trieschnigg (UT)

Proof of Concept: Concept-based Biomedical Information Retrieval
2010-36 Jose Janssen (OU)

Paving the Way for Lifelong Learning; Facilitating competence
development through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting -
the computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access
to Heterogeneous Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Withdrawn
2010-49 Jahn-Takeshi Saito (UM)

Solving difficult game positions
2010-50 Bouke Huurnink (UVA)

Search in Audiovisual Broadcast Archives
2010-51 Alia Khairia Amin (CWI)

Understanding and supporting information seeking tasks in multiple sources
2010-52 Peter-Paul van Maanen (VU)

Adaptive Support for Human-Computer Teams: Exploring the Use of
Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Access

====
2011
====

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations. Syntax and Operational Semantics
of an Organization-Oriented Programming Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning; Formal analysis and empirical
evaluation of temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age - Increasing the Performance
of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)
The Mind’s Eye on Personal Profiles

2011-20 Qing Gu (VU)
Guiding service-oriented software engineering - A view-based approach

2011-21 Linda Terlouw (TUD)
Modularization and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UVA)
System Evaluation of Archival Description and Access

2011-23 Wouter Weerkamp (UVA)
Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)
Behavior Generation for Interpersonal Coordination with Virtual Humans
On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU))
Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication - Emotion Regulation and Involvement-Distance
Trade-Offs in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data, Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent Support of Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality

====
2012
====

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)
Supporting Architecture Evolution by Mining Software Repositories

2012-04 Jurriaan Souer (UU)
Development of Content Management System-based Web Applications

2012-05 Marijn Plomp (UU)
Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)
Awareness Support for Knowledge Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)
When the Going Gets Tough: Exploring Agent-based Models of Human
Performance under Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)
Fun and Face: Exploring non-verbal expressions of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)
Generic Adaptation Framework for Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)
Social Agents. Agent-Based Modelling of Integrated Internal and Social
Dynamics of Cognitive and Affective Processes.

2012-16 Fiemke Both (VU)
Helping people by understanding them - Ambient Agents supporting task
execution and depression treatment

2012-17 Amal Elgammal (UvT)
Towards a Comprehensive Framework for Business Process Compliance

2012-18 Eltjo Poort (VU)
Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)
What’s Next? Operational Support for Business Process Execution

2012-20 Ali Bahramisharif (RUN)
Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)
Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)
Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)
Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of
Affect during Human Media Interaction

2012-24 Laurens van der Werff (UT)
Evaluation of Noisy Transcripts for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)
Managing the Business Case Development in Inter-Organizational IT Projects:
A Methodology and its Application

2012-26 Emile de Maat (UVA)
Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)
Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)
Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)
Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)
Designing Human-Centered Systems for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)
A Learning by Construction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and Infrastructure

2012-32 Wietske Visser (TUD)
Qualitative multi-criteria preference representation and reasoning

2012-33 Rory Sie (OUN)
Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)
Evolutionary analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU)
Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)
Analysis and Evaluation of Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)
A Collaboration Process for Enterprise Architecture Creation

2012-38 Selmar Smit (VU)
Parameter Tuning and Scientific Testing in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)
Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)
Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)
Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)
Reflection Amplifiers in self-regulated Learning

2012-43 Withdrawn
2012-44 Anna Tordai (VU)

On Combining Alignment Techniques
2012-45 Benedikt Kratz (UvT)

A Model and Language for Business-aware Transactions
2012-46 Simon Carter (UVA)

Exploration and Exploitation of Multilingual Data for Statistical Machine Translation
2012-47 Manos Tsagkias (UVA)

Mining Social Media: Tracking Content and Predicting Behavior
2012-48 Jorn Bakker (TUE)

Handling Abrupt Changes in Evolving Time-series Data
2012-49 Michael Kaisers (UM)

Learning against Learning - Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions

2012-50 Steven van Kervel (TUD)
Ontologogy driven Enterprise Information Systems Engineering

2012-51 Jeroen de Jong (TUD)
Heuristics in Dynamic Sceduling; a practical framework with a case
study in elevator dispatching

====
2013
====

2013-01 Viorel Milea (EUR)
News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)
MonetDB/DataCell: Leveraging the Column-store Database Technology
for Efficient and Scalable Stream Processing

2013-03 Szymon Klarman (VU)
Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)
Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)
Groupware Requirements Evolutions Patterns

2013-06 Romulo Goncalves(CWI)
The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience

2013-07 Giel van Lankveld (UvT)
Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk(VU)
Making enemies: cognitive modeling for opponent agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)
Metagenomic Data Analysis: Computational Methods and Applications

2013-10 Jeewanie Jayasinghe Arachchige(UvT)
A Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD)
Multi-level Reconfigurable Self-organization in Overlay Services

2013-12 Marian Razavian(VU)
Knowledge-driven Migration to Services

2013-13 Mohammad Safiri(UT)
Service Tailoring: User-centric creation of integrated IT-based
homecare services to support independent living of elderly

2013-14 Jafar Tanha (UVA)

Ensemble Approaches to Semi-Supervised Learning Learning
2013-15 Daniel Hennes (UM)

Multiagent Learning - Dynamic Games and Applications
2013-16 Eric Kok (UU)

Exploring the practical benefits of argumentation in multi-agent deliberation
2013-17 Koen Kok (VU)

The PowerMatcher: Smart Coordination for the Smart Electricity Grid
2013-18 Jeroen Janssens (UvT)

Outlier Selection and One-Class Classification
2013-19 Renze Steenhuizen (TUD)

Coordinated Multi-Agent Planning and Scheduling
2013-20 Katja Hofmann (UvA)

Fast and Reliable Online Learning to Rank for Information Retrieval
2013-21 Sander Wubben (UvT)

Text-to-text generation by monolingual machine translation
2013-22 Tom Claassen (RUN)

Causal Discovery and Logic
2013-23 Patricio de Alencar Silva(UvT)

Value Activity Monitoring
2013-24 Haitham Bou Ammar (UM)

Automated Transfer in Reinforcement Learning
2013-25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support. A new way of representing and
implementing clinical guidelines in a Decision Support System

2013-26 Alireza Zarghami (UT)
Architectural Support for Dynamic Homecare Service Provisioning

2013-27 Mohammad Huq (UT)
Inference-based Framework Managing Data Provenance

2013-28 Frans van der Sluis (UT)
When Complexity becomes Interesting: An Inquiry into the Information eXperience

2013-29 Iwan de Kok (UT)
Listening Heads

2013-30 Joyce Nakatumba (TUE)
Resource-Aware Business Process Management: Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)
Blueprint Model and Language for Engineering Cloud Applications

2013-32 Kamakshi Rajagopal (OUN)
Networking For Learning; The role of Networking in a Lifelong
Learner’s Professional Development

2013-33 Qi Gao (TUD)
User Modeling and Personalization in the Microblogging Sphere

2013-34 Kien Tjin-Kam-Jet (UT)
Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA)
Minimal Mobile Human Computer Interaction

2013-36 Than Lam Hoang (TUe)
Pattern Mining in Data Streams

2013-37 Dirk Börner (OUN)
Ambient Learning Displays

2013-38 Eelco den Heijer (VU)
Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD)
A Method for Enterprise Ontology based Design of Enterprise Information Systems

2013-40 Pim Nijssen (UM)
Monte-Carlo Tree Search for Multi-Player Games

2013-41 Jochem Liem (UVA)
Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge
Engineering Perspective on Qualitative Reasoning

2013-42 Leon Planken (TUD)
Algorithms for Simple Temporal Reasoning

2013-43 Marc Bron (UVA)

Exploration and Contextualization through Interaction and Concepts

====
2014
====

2014-01 Nicola Barile (UU)
Studies in Learning Monotone Models from Data

2014-02 Fiona Tuliyano (RUN)
Combining System Dynamics with a Domain Modeling Method

2014-03 Sergio Raul Duarte Torres (UT)
Information Retrieval for Children: Search Behavior and Solutions

2014-04 Hanna Jochmann-Mannak (UT)
Websites for children: search strategies and interface design -
Three studies on children’s search performance and evaluation

2014-05 Jurriaan van Reijsen (UU)
Knowledge Perspectives on Advancing Dynamic Capability

2014-06 Damian Tamburri (VU)
Supporting Networked Software Development

2014-07 Arya Adriansyah (TUE)
Aligning Observed and Modeled Behavior

2014-08 Samur Araujo (TUD)
Data Integration over Distributed and Heterogeneous Data Endpoints

2014-09 Philip Jackson (UvT)
Toward Human-Level Artificial Intelligence: Representation and
Computation of Meaning in Natural Language

2014-10 Ivan Salvador Razo Zapata (VU)
Service Value Networks

2014-11 Janneke van der Zwaan (TUD)
An Empathic Virtual Buddy for Social Support

2014-12 Willem van Willigen (VU)
Look Ma, No Hands: Aspects of Autonomous Vehicle Control

2014-13 Arlette van Wissen (VU)
Agent-Based Support for Behavior Change: Models and Applications in
Health and Safety Domains

2014-14 Yangyang Shi (TUD)
Language Models With Meta-information

2014-15 Natalya Mogles (VU)
Agent-Based Analysis and Support of Human Functioning in
Complex Socio-Technical Systems: Applications in Safety and Healthcare

2014-16 Krystyna Milian (VU)
Supporting trial recruitment and design by automatically
interpreting eligibility criteria

2014-17 Kathrin Dentler (VU)
Computing healthcare quality indicators automatically: Secondary Use
of Patient Data and Semantic Interoperability

2014-18 Mattijs Ghijsen (VU)
Methods and Models for the Design and Study of Dynamic Agent Organizations

2014-19 Vincius Ramos (TUE)
Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool Support

2014-20 Mena Habib (UT)
Named Entity Extraction and Disambiguation for Informal Text: The Missing Link

2014-21 Kassidy Clark (TUD)
Negotiation and Monitoring in Open Environments

2014-22 Marieke Peeters (UU)
Personalized Educational Games - Developing agent-supported scenario-based training

2014-23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Data Era

2014-24 Davide Ceolin (VU)
Trusting Semi-structured Web Data

2014-25 Martijn Lappenschaar (RUN)

New network models for the analysis of disease interaction
2014-26 Tim Baarslag (TUD)

What to Bid and When to Stop 2014-27 Rui Jorge Almeida (EUR)
Conditional Density Models Integrating Fuzzy and Probabilistic Representations
of Uncertainty

2014-28 Anna Chmielowiec (VU)
Decentralized k-Clique Matching

2014-29 Jaap Kabbedijk (UU)
Variability in Multi-Tenant Enterprise Software

2014-30 Peter de Cock (UvT)
Anticipating Criminal Behaviour

2014-31 Leo van Moergestel (UU)
Agent Technology in Agile Multiparallel Manufacturing and Product Support

2014-32 Naser Ayat (UvA)
On Entity Resolution in Probabilistic Data

2014-33 Tesfa Tegegne (RUN)
Service Discovery in eHealth

2014-34 Christina Manteli(VU)
The Effect of Governance in Global Software Development:
Analyzing Transactive Memory Systems.

2014-35 Joost van Ooijen (UU)
Cognitive Agents in Virtual Worlds: A Middleware Design Approach

2014-36 Joos Buijs (TUE)
Flexible Evolutionary Algorithms for Mining Structured Process Models

2014-37 Maral Dadvar (UT)
Experts and Machines United Against Cyberbullying

2014-38 Danny Plass-Oude Bos (UT)
Making brain-computer interfaces better: improving usability through post-processing.

2014-39 Jasmina Maric (UvT)
Web Communities, Immigration, and Social Capital

2014-40 Walter Omona (RUN)
A Framework for Knowledge Management Using ICT in Higher Education

2014-41 Frederic Hogenboom (EUR)
Automated Detection of Financial Events in News Text

2014-42 Carsten Eijckhof (CWI/TUD)
Contextual Multidimensional Relevance Models

2014-43 Kevin Vlaanderen (UU)
Supporting Process Improvement using Method Increments

2014-44 Paulien Meesters (UvT)
Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde politiezorg
in gebiedsgebonden eenheden.

2014-45 Birgit Schmitz (OUN)
Mobile Games for Learning: A Pattern-Based Approach

2014-46 Ke Tao (TUD)
Social Web Data Analytics: Relevance, Redundancy, Diversity

2014-47 Shangsong Liang (UVA)
Fusion and Diversification in Information Retrieval

====
2015
====

2015-01
Niels Netten (UvA)

Machine Learning for Relevance of Information in Crisis Response
2015-02 Faiza Bukhsh (UvT)

Smart auditing: Innovative Compliance Checking in Customs Controls
2015-03 Twan van Laarhoven (RUN)

Machine learning for network data
2015-04 Howard Spoelstra (OUN)

Collaborations in Open Learning Environments

2015-05 Christoph Böch(UT)
Cryptographically Enforced Search Pattern Hiding

2015-06 Farideh Heidari (TUD)
Business Process Quality Computation - Computing Non-Functional Requirements to
Improve Business Processes

2015-07 Maria-Hendrike Peetz(UvA)
Time-Aware Online Reputation Analysis

2015-08 Jie Jiang (TUD)
Organizational Compliance: An agent-based model for designing and evaluating
organizational interactions

2015-09 Randy Klaassen(UT)
HCI Perspectives on Behavior Change Support Systems

2015-10 Henry Hermans (OUN)
OpenU: design of an integrated system to support lifelong learning

2015-11 Yongming Luo(TUE)
Designing algorithms for big graph datasets: A study of computing bisimulation and joins

2015-12 Julie M. Birkholz (VU)
Modi Operandi of Social Network Dynamics:
The Effect of Context on Scientific Collaboration Networks

2015-13 Giuseppe Procaccianti(VU)
Energy-Efficient Software

2015-14 Bart van Straalen (UT)
A cognitive approach to modeling bad news conversations

2015-15 Klaas Andries de Graaf (VU)
Ontology-based Software Architecture Documentation

Bibliography

[1] ISO/IEC/IEEE systems and software engineering – vocabulary.
ISO/IEC/IEEE 24765:2010(E), pages 1–418, 2010. (Cited on page 1.)

[2] ISO/IEC/IEEE systems and software engineering – architecture descrip-
tion. ISO/IEC/IEEE 42010:2011(E), pages 1–46, 2011. (Cited on pages 18,
40, 117, 124, 127, and 139.)

[3] Steve Adolph, Wendy Hall, and Philippe Kruchten. Using grounded the-
ory to study the experience of software development. Empirical Software
Engineering, 16 (4)(4):487–513, 2011. (Cited on page 61.)

[4] Art Akerman and Jeff Tyree. Using ontology to support development of
software architectures. IBM Systems Journal, 45(4):813–825, 2006. (Cited
on pages 4 and 46.)

[5] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. MIT
Press, second edition, 2008. (Cited on page 46.)

[6] Soren Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki a tool for
social, semantic collaboration. In 5th International Semantic Web Confer-
ence ISWC2006, pages 736–749. Springer LNCS, 2006. (Cited on pages 48
and 148.)

[7] Muhammad Ali Babar and Ian Gorton. A tool for managing software
architecture knowledge. In Workshop on SHAring and Reusing architec-
tural Knowledge Architecture, Rationale, and Design Intent (SHARK-ADI),
pages 11–18. IEEE, 2007. (Cited on page 54.)

[8] Lenin Babu T., M. Seetha Ramaiah, T. V. Prabhakar, and D. Rambabu.
Archvoc-towards an ontology for software architecture. In Workshop on
SHAring and Reusing architectural Knowledge Architecture, Rationale, and
Design Intent (SHARK-ADI), pages 5–11. IEEE, 2007. (Cited on pages 46
and 118.)

[9] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, third edition, 2012. (Cited on pages 2, 3, 40, 42,
50, 58, 71, 124, 139, and 141.)

[10] Len Bass, Rick Kazman, and Ipek Ozkaya. Developing architectural doc-
umentation for the hadoop distributed file system. In Open Source Sys-
tems: Grounding Research, volume 365 of IFIP Advances in Information
and Communication Technology, pages 50–61. Springer, 2011. (Cited on
page 111.)

175

BIBLIOGRAPHY

[11] Grady Booch. Architecture reviews. IEEE Software, 27(3):96, 95, 2010.
(Cited on page 122.)

[12] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and
Mohamed Khalil. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of Systems and
Software, 80(4):571 – 583, 2007. (Cited on page 8.)

[13] Andrew Brooks, Marc Roper, Murray Wood, John W. Daly, and James
Miller. Replication’s role in software engineering. In Guide to Advanced
Empirical Software Engineering, pages 365–379. Springer, 2008. (Cited on
page 115.)

[14] Michel Buffa, Fabien Gandon, Guillaume Ereteo, Peter Sander, and Cather-
ine Faron. Sweetwiki: A semantic wiki. Web Semantics: Science, Services
and Agents on the World Wide Web, 6(1):84 – 97, 2008. (Cited on page 43.)

[15] Janet E. Burge and David C. Brown. Software engineering using rationale.
Journal of Systems and Software, 81(3):395–413, 2008. (Cited on page 54.)

[16] Tobias Bürger, Elena Simperl, Stephan Wölger, and Simon Hangl. Using
cost-benefit information in ontology engineering projects. In Context and
Semantics for Knowledge Management, pages 61–90. Springer, 2011. (Cited
on page 69.)

[17] Gul Calikli, Ayse Bener, and Berna Arslan. An analysis of the effects of
company culture, education and experience on confirmation bias levels of
software developers and testers. In International Conference on Software
Engineering (ICSE), pages 187–190. IEEE, 2010. (Cited on page 36.)

[18] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C. Dueñas. A web-
based tool for managing architectural design decisions. ACM SIGSOFT
Software Engineering Notes, 31(5), 2006. (Cited on page 54.)

[19] Hsinchun Chen and Vasant Dhar. Cognitive process as a basis for intelligent
retrieval systems design. Information Processing & Management, 27(5):405
– 432, 1991. (Cited on pages 8, 21, 34, and 35.)

[20] Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the im-
pact of software development problem factors on software maintainability.
Journal of Systems and Software, 82(6):981–992, 2009. (Cited on page 3.)

[21] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Document-
ing Software Architectures: Views and Beyond. Addison-Wesley, second
edition, 2010. (Cited on pages 2, 3, 4, 40, 42, 84, 141, 145, and 146.)

176

BIBLIOGRAPHY

[22] Jeff Conklin. Hypertext: An introduction and survey. IEEE Computer,
20(9):17–41, 1987. (Cited on page 43.)

[23] Remco C. de Boer and Hans van Vliet. Architectural knowledge discovery
with latent semantic analysis: Constructing a reading guide for software
product audits. Journal of Systems and Software, 81(9):1456–1469, 2008.
(Cited on pages 42 and 147.)

[24] Remco C. de Boer and Hans van Vliet. Writing and reading software doc-
umentation: How the development process may affect understanding. In
ICSE Workshop on Cooperative and Human Aspects on Software Engineer-
ing (CHASE), pages 40–47. IEEE, 2009. (Cited on page 35.)

[25] Klaas Andries de Graaf. Annotating software documentation in semantic
wikis. In Workshop on Exploiting semantic annotations in information
retrieval (ESAIR), pages 5–6. ACM, 2011. (Cited on page 13.)

[26] Klaas Andries de Graaf, Peng Liang, Antony Tang, Willem Robert van
Hage, and Hans van Vliet. An exploratory study on ontology engineering for
software architecture documentation. Computers in Industry, 65(7):1053 –
1064, 2014. (Cited on pages 13 and 128.)

[27] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet.
The impact of prior knowledge on searching in software documentation.
In ACM Symposium on Document Engineering (DocEng), pages 189–198.
ACM, 2014. (Cited on page 12.)

[28] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet.
Supporting architecture documentation: A comparison of two ontolo-
gies for knowledge retrieval. In International Conference on Evalua-
tion and Assessment in Software Engineering (EASE). ACM, 2015 -
http://dx.doi.org/10.1145/2745802.2745804. (Cited on page 13.)

[29] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van
Vliet. How organisation of architecture documentation affects architectural
knowledge retrieval. Science of Computer Programming - Special Issue on
Knowledge-based Software Engineering, March 2016 - under review. (Cited
on pages 12 and 13.)

[30] Klaas Andries de Graaf, Antony Tang, Peng Liang, and Hans van Vliet.
Ontology-based software architecture documentation. In Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), pages 121–130. IEEE, 2012.
(Cited on pages 13, 72, and 95.)

177

BIBLIOGRAPHY

[31] Jorge Andrés Díaz-Pace, Matias Nicoletti, Silvia N. Schiaffino, Christian
Villavicencio, and Luis Emiliano Sanchez. A stakeholder-centric optimiza-
tion strategy for architectural documentation. In International Conference
on Model and Data Engineering (MEDI), pages 104–117. Springer LNCS,
2013. (Cited on pages 4, 61, and 84.)

[32] Andrew Dillon, Cliff McKnight, and John Richardson. Navigation in hy-
pertext: A critical review of the concept. In Interational Conference
on Human-Computer Interaction (INTERACT), pages 587–592. North-
Holland Publishing Co., 1990. (Cited on page 43.)

[33] Wei Ding, Peng Liang, Antony Tang, and Hans van Vliet. Knowledge-
based approaches in software documentation: A systematic literature re-
view. Information and Software Technology, 56(6):545 – 567, 2014. (Cited
on page 35.)

[34] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research.
In Guide to Advanced Empirical Software Engineering, pages 285–311.
Springer, 2008. (Cited on pages 7 and 8.)

[35] K. Anders Ericsson and Herbert A. Simon. Protocol Analysis: Verbal Re-
ports as Data. MIT Press, revised edition, 1993. (Cited on pages 8 and 21.)

[36] Davide Falessi, Lionel C. Briand, Giovanni Cantone, Rafael Capilla, and
Philippe Kruchten. The value of design rationale information. ACM Trans-
actions on Software Engineering and Methodology, 22(3):21:1–21:32, 2013.
(Cited on page 138.)

[37] Andy Field. Discovering Statistics Using SPSS - 2nd Edition. Sage Publi-
cations, 2005. (Cited on page 116.)

[38] Golara Garousi, Vahid Garousi-Yusifoglu, Guenther Ruhe, Junji Zhi, Mah-
moud Moussavi, and Brian Smith. Usage and usefulness of technical soft-
ware documentation: An industrial case study. Information and Software
Technology, 57(0):664 – 682, 2015. (Cited on page 111.)

[39] T. R. Girill and Clement H. Luk. Hierarchical search support for hypertext
on-line documentation. Man-Machine Studies, 36(4):571–585, 1992. (Cited
on page 43.)

[40] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded
Theory. Weidenfeld and Nicolson, 1967. (Cited on pages 8 and 61.)

[41] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2):199 – 220, 1993. (Cited on page 45.)

178

BIBLIOGRAPHY

[42] Thomas R. Gruber. Toward principles for the design of ontologies used
for knowledge sharing. International Journal of Human-Computer Studies,
43(5-6):907–928, December 1995. (Cited on pages 12, 125, and 128.)

[43] Michael Grüninger and Mark S. Fox. Methodology for the Design and
Evaluation of Ontologies. International Joint Conference on Artificial In-
teligence (IJCAI), Workshop on Basic Ontological Issues in Knowledge
Sharing, 1995. (Cited on page 79.)

[44] Jin Guo, Jane Cleland-Huang, and Brian Berenbach. Foundations for an ex-
pert system in domain-specific traceability. In International Requirements
Engineering Conference (RE), pages 42–51, 2013. (Cited on page 147.)

[45] Hans-Jörg Happel and Stefan Seedorf. Ontobrowse: A semantic wiki for
sharing knowledge about software architectures. In SEKE, pages 506–512,
2007. (Cited on page 59.)

[46] Hans-Jörg Happel and Stefan Seedorf. Documenting service-oriented archi-
tectures with ontobrowse semantic wiki. In PRIMIUM, volume 328, 2008.
(Cited on page 54.)

[47] Martin Hepp. Possible ontologies: How reality constrains the development
of relevant ontologies. IEEE Internet Computing, 11 (1)(1):90 –96, jan-feb
2007. (Cited on pages 58 and 70.)

[48] Bart Hoenderboom and Peng Liang. A survey of semantic wikis for require-
ments engineering. Technical report, SEARCH, University of Groningen,
2009. (Cited on page 48.)

[49] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied software archi-
tecture. Addison-Wesley, 2000. (Cited on pages 3 and 42.)

[50] Hilary J. Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen Pur-
chase, and Catherine Reed. Research methods in computing: What are
they, and how should we teach them? SIGCSE Bull., 38(4):96–114, 2006.
(Cited on pages 8 and 9.)

[51] Anton Jansen, Paris Avgeriou, and Jan Salvador van der Ven. Enrich-
ing software architecture documentation. J. Syst. Softw., 82(8):1232–1248,
August 2009. (Cited on pages 4, 42, 59, 78, 118, 122, 127, and 141.)

[52] Anton Jansen and Jan Bosch. Software architecture as a set of architec-
tural design decisions. In Working IEEE/IFIP Conference on Software
Architecture (WICSA), pages 109–120. IEEE, 2005. (Cited on page 54.)

[53] Muhammad Atif Javed and Uwe Zdun. The supportive effect of trace-
ability links in architecture-level software understanding: Two controlled

179

BIBLIOGRAPHY

experiments. In Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 215–224. IEEE, 2014. (Cited on page 41.)

[54] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. Reporting
Experiments in Software Engineering. In Guide to Advanced Empirical
Software Engineering, pages 201–228. Springer, 2008. (Cited on page 113.)

[55] Barbara A. Kitchenham and Shari L. Pfleeger. Personal opinion surveys. In
Guide to Advanced Empirical Software Engineering, pages 63–92. Springer,
2008. (Cited on page 8.)

[56] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.
An exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
Software Engineering, 32(12):971–987, 2006. (Cited on page 36.)

[57] Henk Koning and Hans van Vliet. Real-life IT architecture design reports
and their relation to IEEE std 1471 stakeholders and concerns. Automated
Software Engineering, 13(2):201–223, 2006. (Cited on pages 40, 124, 139,
and 147.)

[58] Mikko Korkala and Frank Maurer. Waste identification as the means for
improving communication in globally distributed agile software develop-
ment. Journal of Systems and Software, 95(0):122 – 140, 2014. (Cited on
page 36.)

[59] Konstantinos Kotis and George Vouros. Human-centered ontology engi-
neering: The hcome methodology. Knowledge and Information Systems, 10
(1)(1):109–131, 2006. (Cited on page 80.)

[60] Philippe Kruchten. An Ontology of Architectural Design Decisions in Soft-
ware Intensive Systems. In 2nd Groningen Workshop Software Variability,
pages 54–61, October 2004. (Cited on pages 4 and 46.)

[61] Philippe Kruchten. Contextualizing agile software development. Journal of
Software: Evolution and Process, 25 (4):351–361, 2013. (Cited on page 67.)

[62] John A. Kunze and Thomas Baker. Dublin core metadata element set,
version 1.1. Technical Report RFC 5013, Internet Engineering Task Force,
2007. (Cited on pages 50 and 51.)

[63] John K. Kyaruzi and Jan van Katwijk. Beyond components-connections-
constraints: Dealing with software architecture difficulties. In IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages
235–242. IEEE, 1999. (Cited on page 46.)

180

BIBLIOGRAPHY

[64] Patricia Lago and Paris Avgeriou. First workshop on sharing and reusing
architectural knowledge. ACM SIGSOFT Software Engineering Notes,
31(5):32–36, 2006. (Cited on page 2.)

[65] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental
models: A study of developer work habits. In International Conference
on Software Engineering (ICSE), pages 492–501. ACM, 2006. (Cited on
pages 15, 16, and 35.)

[66] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software
engineers use documentation: The state of the practice. IEEE Softw.,
20(6):35–39, November 2003. (Cited on pages 16 and 42.)

[67] Peng Liang and Paris Avgeriou. Tools and technologies for architecture
knowledge management. In Software Architecture Knowledge Management,
pages 91–111. Springer, 2009. (Cited on page 54.)

[68] Claudia López, Víctor Codocedo, Hernán Astudillo, and Luiz Marcio Cys-
neiros. Bridging the gap between software architecture rationale formalisms
and actual architecture documents: An ontology-driven approach. Science
of Computer Programming, 77(1):66–80, January 2012. (Cited on pages 4,
46, 118, 122, 141, and 146.)

[69] Claudia López, Pablo Inostroza, Luiz Marcio Cysneiros, and Hernán As-
tudillo. Visualization and comparison of architecture rationale with seman-
tic web technologies. J. Syst. Softw., 82(8):1198–1210, August 2009. (Cited
on page 45.)

[70] Jocelyne Nanard, Marc Nanard, Anne-Marie Massotte, Alain Djemaa,
Alain Joubert, Henri Betaille, and Jacques Chauché. Integrating
knowledge-based hypertext and database for task-oriented access to docu-
ments. pages 721–732. Springer LNCS, 1993. (Cited on page 43.)

[71] Peter Naur and Brian Randell. Software Engineering: Report of a Con-
ference Sponsored by the NATO Science Committee, Garmisch, Germany,
7-11 Oct. 1968. NATO Scientific Affairs Division, Brussels, 1969. (Cited
on page 1.)

[72] A.J. Neumann. Management guide for software documentation. In NBS
Special Publication 500-87. NBS, 1982. (Cited on page 3.)

[73] Allen Newell and Herber A. Simon. Human Problem Solving. Prentice Hall,
1972. (Cited on pages 21 and 34.)

181

BIBLIOGRAPHY

[74] Raymond S. Nickerson. Confirmation bias: A ubiquitous phenomenon in
many guises. Review of General Psychology, 2(2):175–220, 1998. (Cited on
page 32.)

[75] Antonio De Nicola, Michele Missikoff, and Roberto Navigli. A proposal
for a unified process for ontology building: Upon. In Database and Expert
Systems Applications - DEXA, pages 655–664. Springer LNCS, 2005. (Cited
on page 79.)

[76] Robert Nord, Paul Clements, David Emery, and Rich Hilliard. A struc-
tured approach for reviewing architecture documentation. Technical Report
CMU/SEI-2009-TN-030, SEI, Software Engineering Institute, Carnegie
Mellon University, 2009. (Cited on page 127.)

[77] David Lorge Parnas. Precise Documentation: The Key to Better Software.
In The Future of Software Engineering, chapter 8, pages 125–148. Springer,
2011. (Cited on pages 2, 3, 4, 15, 16, 34, 41, and 141.)

[78] David Lorge Parnas and Paul Clements. A rational design process: How
and why to fake it. In Formal Methods and Software Development, pages
80–100. Springer LNCS, 1985. (Cited on pages 3 and 40.)

[79] H. Sofia Pinto, Steffen Staab, Christoph Tempich, and York Sure. Dis-
tributed engineering of ontologies (diligent). In Semantic Web and Peer-
to-Peer, pages 303–322. Springer LNCS, 2006. (Cited on page 79.)

[80] Dominik Rost, Matthias Naab, Crescencio Lima, and Christina von Flach
Garcia Chavez. Software architecture documentation for developers: A
survey. In European Conference on Software Architecture (ECSA), pages
72–88. Springer LNCS, 2013. (Cited on pages 3, 4, 15, 41, 42, 84, 123,
and 141.)

[81] Nick Rozanski and Eóin Woods. Software Systems Architecture: Work-
ing With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley
Professional, 2005. (Cited on page 40.)

[82] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering, 14
(2)(2):131–164, 2009. (Cited on pages 8 and 72.)

[83] Widura Schwittek and Stefan Eicker. Communicating architectural knowl-
edge: Requirements for software architecture knowledge management tools.
In European Conference on Software Architecture (ECSA), pages 457–463.
Springer LNCS, 2010. (Cited on pages 4 and 41.)

182

BIBLIOGRAPHY

[84] Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi. Archi-
tectural design decision: Existing models and tools. InWorking IEEE/IFIP
Conference on Software Architecture (WICSA), pages 293–296. IEEE, 2009.
(Cited on page 46.)

[85] Mojtaba Shahin, Peng Liang, and Zengyang Li. Architectural design deci-
sion visualization for architecture design: preliminary results of a controlled
experiment. In Proceedings of the 5th European Conference on Software Ar-
chitecture (ECSA): Companion Volume, pages 2:1–2:8. ACM, 2011. (Cited
on page 41.)

[86] Steven J. Shute and Philip J. Smith. Knowledge-based search tactics. Infor-
mation Processing & Management, 29(1):29 – 45, 1993. (Cited on page 35.)

[87] Elena Paslaru Bontas Simperl and Christoph Tempich. Ontology engineer-
ing: a reality check. In On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, OTM Confederated International
Conferences, pages 836–854. Springer LNCS, 2006. (Cited on page 59.)

[88] Amit Singhal. Modern information retrieval: A brief overview. IEEE Data
Engineering Bulletin, 24(4):35–43, 2001. (Cited on page 94.)

[89] Carlos Solis and Nour Ali. An experience using a spatial hypertext wiki.
In Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia
(HT), pages 133–142. ACM, 2011. (Cited on page 43.)

[90] Carlos Solis, Nour Ali, and Muhammad Ali Babar. A spatial hypertext
wiki for architectural knowledge management. In Workshop on Wikis for
Software Engineering (WIKIS4SE), pages 36–46, 2009. (Cited on page 43.)

[91] Webb Stacy and Jean MacMillan. Cognitive bias in software engineering.
Commun. ACM, 38(6):57–63, 1995. (Cited on pages 16, 33, and 36.)

[92] Christoph Johann Stettina and Werner Heijstek. Necessary and neglected?:
An empirical study of internal documentation in agile software development
teams. In Proceedings of the 29th ACM International Conference on De-
sign of Communication (SIGDOC), pages 159–166. ACM, 2011. (Cited on
page 2.)

[93] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research: Tech-
niques and Procedures for Developing Grounded Theory. Sage, second edi-
tion, 1998. (Cited on pages 8, 61, 64, 65, 66, and 73.)

[94] Moon Ting Su. Capturing exploration to improve software architecture doc-
umentation. In Proceedings of the Fourth European Conference on Software
Architecture (ECSA), pages 17–21. ACM, 2010. (Cited on page 147.)

183

BIBLIOGRAPHY

[95] Moon Ting Su, Christian Hirsch, and John Hosking. Kaitorobase: Visual
exploration of software architecture documents. In International Confer-
ence on Automated Software Engineering (ASE), pages 657–659. IEEE,
2009. (Cited on pages 4 and 54.)

[96] Moon Ting Su, Ewan Tempero, John Hosking, and John Grundy. A study of
architectural information foraging in software architecture documents. In
Working IEEE/IFIP Conference on Software Architecture (WICSA) and
European Conference on Software Architecture (ECSA), pages 141–150.
IEEE, 2012. (Cited on page 36.)

[97] York Sure, Steffen Staab, and Rudi Studer. On-to-knowledge methodology
(otkm). In Handbook on Ontologies, pages 117–132. Springer, 2004. (Cited
on page 79.)

[98] York Sure, Christoph Tempich, and Denny Vrandecic. Ontology engineer-
ing methodologies. In Semantic Web Technologies: Trends and Research
in Ontology-based Systems, pages 171–190. Wiley, UK, 2006. (Cited on
page 70.)

[99] Damien Andrew Tamburri. An architecture description viewpoint wiki
based on the semantic web paradigm. Master’s thesis, Department of Com-
puter Science, VU University Amsterdam, 2010. (Cited on pages 48, 117,
and 147.)

[100] Antony Tang. Software designers, are you biased? In Proceedings of the 6th
International Workshop on SHAring and Reusing Architectural Knowledge,
(SHARK), pages 1–8. ACM, 2011. (Cited on page 35.)

[101] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A sur-
vey of architecture design rationale. Journal of Systems and Software,
79(12):1792–1804, 2006. (Cited on pages 2 and 3.)

[102] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture model
for design traceability and reasoning. Journal of Systems and Software,
80(6):918–934, 2007. (Cited on page 54.)

[103] Antony Tang, Peng Liang, Viktor Clerc, and Hans van Vliet. Support-
ing co-evolving architectural requirements and design through traceability
and reasoning. In Relating Software Requirements to Software Architecture,
pages 59 – 85. Springer, 2011. (Cited on pages 46, 122, and 145.)

[104] Antony Tang, Peng Liang, and Hans van Vliet. Software architecture
documentation: The road ahead. In Working IEEE/IFIP Conference on
Software Architecture (WICSA), pages 252–255. IEEE, 2011. (Cited on
pages 46, 51, 75, 89, and 90.)

184

BIBLIOGRAPHY

[105] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N degrees of separation: multi-dimensional separation of concerns. In In-
ternational Conference on Software Engineering (ICSE), pages 107–119.
ACM, 1999. (Cited on page 39.)

[106] Manfred Thüring, Jörg M. Haake, and Jörg Hannemann. What’s eliza
doing in the chinese room? incoherent hyperdocuments and how to avoid
them. In ACM Conference on Hypertext (HYPERTEXT), pages 161–177.
ACM, 1991. (Cited on page 43.)

[107] Efraim Turban and Jay E. Aronson. Decision Support Systems and In-
telligent Systems. Prentice Hall, sixth edition, 2000. (Cited on pages 63
and 70.)

[108] Amos Tversky and Daniel Kahneman. Judgment under uncertainty:
Heuristics and biases. Science, 185(4157):1124–1131, 1974. (Cited on
pages 16, 27, and 28.)

[109] Cathy Urquhart and Walter Fernandez. Grounded theory method: the
researcher as blank slate and other myths. International Conference on
Information Systems (ICIS), pages 457–464, 2006. (Cited on page 61.)

[110] Mike Uschold and Martin King. Towards a methodology for building on-
tologies. International Joint Conference on Artificial Inteligence (IJCAI),
Workshop on Basic Ontological Issues in Knowledge Sharing, 1995. (Cited
on page 79.)

[111] Jan Salvador van der Ven, Anton Jansen, Paris Avgeriou, and Dieter K.
Hammer. Using architectural decisions. In Conference on the Quality of
Software Architectures (QoSA). Karlsruhe University Press, 2006. (Cited
on page 42.)

[112] Uwe van Heesch, Paris Avgeriou, and Rich Hilliard. A documentation
framework for architecture decisions. Journal of Systems and Software,
85(4):795 – 820, 2012. (Cited on page 40.)

[113] Richard L. Van Horn. Empirical studies of management information sys-
tems. SIGMIS Database, 5(2-3-4):172–182, 1973. (Cited on page 8.)

[114] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworths & Co,
second edition, 1979. (Cited on pages 94 and 130.)

[115] Maarten W. van Someren, Yvonne F. Barnard, and Jacobijn A.C. Sand-
berg. The Think Aloud Method - A practical guide to modelling cognitive
processes. Academic Press London, 1994. (Cited on pages 8 and 20.)

185

BIBLIOGRAPHY

[116] Hans van Vliet. Software engineering - principles and practice. Wiley, third
edition, 2008. (Cited on page 2.)

[117] Marcello Visconti and Curtis R. Cook. Assessing the state of software doc-
umentation practices. In Product Focused Software Process Improvement,
LNCS, pages 485–496. Springer, 2004. (Cited on page 2.)

[118] Weigang Wang and Roy Rada. Experiences with semantic net based hy-
permedia. International Journal of Human-Computer Studies, 43(3):419 –
439, 1995. (Cited on page 43.)

[119] Christopher A. Welty and David A. Ferrucci. A formal ontology for re-
use of software architecture documents. In International Conference on
Automated Software Engineering (ASE), pages 259–270. IEEE, 1999. (Cited
on pages 4 and 46.)

[120] Robert K. Yin. Case study research: design and methods. Sage, fourth
edition, 2009. (Cited on page 8.)

[121] John Zachman. The zachman framework for enterprise architecture. Zach-
man International, 2002. (Cited on page 79.)

[122] Junji Zhi, Vahid Garousi-Yusifoglu, Bo Sun, Golara Garousi, Shawn Shah-
newaz, and Guenther Ruhe. Cost, benefits and quality of software devel-
opment documentation: A systematic mapping. Journal of Systems and
Software, 99(0):175 – 198, 2015. (Cited on page 111.)

186

Abbreviations

AK – Architectural Knowledge
CF – Contextual Factor
CRM – Computer Research Method
e.g. – exempli gratia (example)
et al. – et alii (and others)
etc. – et cetera (and the rest, and so forth)
GT – Grounded Theory
GUI – Graphical User Interface
HTML – HyperText Markup Language
i.e. – id est (that is; in other words)
OWL – Web Ontology Language
PBG – Problem Behaviour Graph
R&D – Research and Development
RDF – Resource Description Framework
RQ – Research Question
SA – Software Architecture
SAD – Software Architecture Document
SBD – Software Behaviour Document
SE – Software Engineering
Sysref – System Reference Document
URL – Uniform Resource Locator
URI – Uniform Resource Identifier
UML – Unified Modelling Language
WYSIWYG – What You See Is What You Get

187

	Introduction
	Software Development and Documentation
	Software Architecture Documentation
	Research Motivation
	Research Questions
	Research Approach
	Thesis Chapters
	Publications

	Searching Architectural Knowledge in File-based Documentation
	Introduction
	Design and Analysis of Search Behaviour Study
	Using Prior Knowledge to Search under Uncertainty
	Lessons Learnt
	Threats to Validity
	Related Work
	Conclusions

	Organising and Retrieving Architectural Knowledge in File-based Documentation
	File-Based Documentation and its Issues
	Hypertext Documentation and Its Issues
	Conclusion

	Ontology-based Architecture Documentation Approach
	Software Architecture Ontologies
	ArchiMind Semantic Wiki
	Annotating SA Documentation in ArchiMind
	Related Work
	Conclusion

	An Exploratory Study on Ontology Engineering for Architecture Documentation
	Introduction
	Background
	Ontology Engineering using the 'Typical Question' Approach
	Contextual Factors in Ontology Engineering
	Case Study
	Related Work
	Conclusions and Future Work

	How Organisation of Architecture Documentation Influences Knowledge Retrieval
	AK Retrieval Efficiency and Effectiveness
	How AK Organisation Affects AK Retrieval
	Qualitative Evaluation
	Cost-Benefit Analysis
	Threats to Validity
	Implications
	Related Work
	Conclusions

	Supporting Architecture Documentation: A Comparison of Ontologies for Knowledge Retrieval
	Introduction
	AK Retrieval Experiment
	AK Organisation and AK Retrieval
	Discussion
	Threats to Validity
	Conclusions

	Conclusions
	Contributions
	Innovative Aspects
	Discussion and Future Work

	Samenvatting
	SIKS Dissertatiereeks
	Bibliography
	Abbreviations

