
Querying Software Architecture Knowledge as
Linked Open Data

Klaas Andries de Graaf∗, Antony Tang†, Peng Liang‡, and Ali Khalili∗
∗VU University Amsterdam, The Netherlands
†Swinburne University of Technology, Australia

‡Wuhan University, China

Abstract—It is difficult for software professionals to find
all the architectural knowledge they need from architecture
documentation, and this results in wasted time and mistakes in
projects. This is the case even when architecture documentation is
indexed by an ontology and stored in a semantic wiki. We present
a prototype tool called AK-Finder which queries architectural
knowledge stored in a semantic wiki as Linked Open Data using
a SPARQL endpoint. Our tool retrieves knowledge from the
semantic wiki and answers questions for architectural review,
design, and development activities. The tool exemplifies how
systems used in the software project lifecycle can integrate and
improve access to architectural knowledge in a semantic wiki.

Index Terms—Ontology-based software architecture documen-
tation, Architectural knowledge retrieval, Semantic wiki, Ontol-
ogy, SPARQL, Query, Endpoint, Linked Open Data

I. INTRODUCTION

Documentation of software architecture serves three important
purposes: it is used for education, system analysis, and stake-
holder communication [1]. Architectural Knowledge (AK)
is contained in SA documentation. AK can be defined as
“the integrated representation of the software architecture
of a software-intensive system (or a family of systems), the
architectural design decisions, and the external context/envi-
ronment” [2]. File-based documents, e.g., text and diagram
files, are often used in industry practice to store AK [3].

Ontology-Based Software Architecture Documentation
(OBSAD) makes use of ontologies for non-linear organisation
of AK via classes and relationships, and this allows document
writers to comprehensively organise AK and relationships
between AK for the needs of document users. Recent studies
provide evidence that the use of OBSAD improves the effi-
ciency and effectiveness of AK recovery [4] and AK retrieval
[5], compared to file-based AK organisation. Even though AK
retrieval via OBSAD is an improvement over the use of file-
based SA documentation, there is no easy and quick way
to search and find AK without understanding the intricate
relationships in an ontology.

In this paper we present a prototype tool, called AK-Finder,
which retrieves knowledge from OBSAD stored in a semantic
wiki. The AK-Finder (Architectural Knowledge Finder) tool
provides a quick and easy way to query the knowledge in a
semantic wiki through the use of predefined queries. Users
can make use of these queries by supplying the contexts or
parameters. The queries retrieve AK to support design and
development activities and answer questions. In this work,

we demonstrate the semantic queries by using architecture
documentation review proposed by the Software Engineering
Institute (SEI) in [6].

Our study illustrates how access to AK in a semantic wiki
can be improved by querying the AK as Linked Open Data
via SPARQL queries and AK-Finder. Our prototype tool AK-
Finder supports software professionals in using and adapting
SPARQL queries to retrieve AK during various software
project activities. AK-Finder exemplifies how systems used in
the software project lifecycle, e.g., modeling, CASE, and IDE
tools, can integrate and implement access to the AK stored
in a semantic wiki, and to AK in other knowledge bases that
provide a SPARQL query endpoint.

Section II describes background and materials, Section III
details on the AK-Finder tool, and Section IV and V report
related work and conclusions respectively. Screenshots and
queries of the AK-Finder tool can be found in Appendix A
and on http://www.archimind.nl/ICSAToolAppendix.pdf.

II. BACKGROUND AND MATERIALS

"An ontology" refers to a formal domain model in which
concepts and relationships among concepts are described [4].
The classes and relationships in an ontology can be used for
organising AK in SA documentation. Each distinct ontology
class and relationship has properties and descriptions that
explicitly define their meaning, allowing different AK users to
interpret them consistently and unambiguously. Relationships
in an ontology allow its users to see how AK instances are
interrelated, e.g., “requirement X is realized by component Y”,
and thereby improves traceability between AK. The use of
ontologies for SA documentation is described in more detail
in [5], [7], [8].

Semantic wikis allows for presentation and navigation of
classes and relationships in an ontology and provide features
of traditional wiki-like systems, e.g., centralised access to
and editing of documentation, versioning, and collaboration
mechanisms. See http://www.archimind.nl/archimindLOD/ to
access the ArchiMind semantic wiki that is queried by the
AK-Finder tool presented in this paper. See https://github.com/
kadevgraaf/archimind for the source code of ArchiMind.

ArchiMind is based on the OntoWiki tool [9] . OntoWiki
offers web-based visualization, search, and management of
(ontology and its instances in) knowledge bases. We made

http://www.archimind.nl/ICSAToolAppendix.pdf
http://www.archimind.nl/archimindLOD/
https://github.com/kadevgraaf/archimind
https://github.com/kadevgraaf/archimind


adaptations to version 0.9.5 of OntoWiki in order to optimize
it for storage and retrieval of SA documentation.

File-based documentation content, e.g., from word proces-
sors and UML tools, and its layout are stored in wikipages
using a WYSIWYG editor in ArchiMind [7]. ’Wikipage’ is an
ontology class and its instances store documentation content.

Our tool demonstrates the use of SPARQL queries
(SPARQL is detailled below) on an example SA document
corpus that is stored and semantically annotated in ArchiMind
semantic wiki. The example SA document1 describes the
architecture of a social network system for software devel-
opers that answers questions of developers and analyses the
development community. Please see [10] for more details.

The SA document was annotated using an AK ontology.
During a study in [10] several authors of this paper used the
AK needs expressed in architecture document review questions
in [6] to build the AK ontology depicted in the figure on http:
//www.archimind.nl/archimindLOD/AKontologyLegend.png

SPARQL (SPARQL Protocol and RDF Query Language)
is part of the semantic web technology stack and used to
query knowledge bases containing ontology instances stored
in RDF. The use of SPARQL queries is to some extent similar
to how SQL (Structured Query Language) is used to query
values, rows, and columns from tables in relational databases.
However, SPARQL queries retrieve classes, class instances, re-
lationships between classes, and instances of relationships that
are stored in a graph-pattern using triples (subject, predicate,
object). SPARQL queries are considerably better aligned with
users’ mental models of a domain. Unlike SQL queries which
reflect the specific structure of a database and how the data is
stored in tables within it, in SPARQL queries the focus is on
user’s understanding of the domain [11].

III. AK-FINDER - QUERYING ARCHITECTURAL
KNOWLEDGE AS LINKED OPEN DATA

ArchiMind semantic wiki is derived from OntoWiki, which
is a semantic wiki and a Linked Open Data server [12]. AK
in the SA documentation in ArchiMind is accessible online
as Linked Open Data (LOD). LOD technologies allow for
data integration on the World Wide Web [13], i.e., online data
published on different domains. Linking data using various
W3C technologies, e.g., RDF and SPARQL, allows persons
and machines to explore the data online as a web of data
[14]. This is part of the semantic web paradigm [13].

The AK instances in ArchiMind are accessible to other
online systems via a static URI containing the ontology URI
and identifier of the AK instance. For example, a client-
server architectural pattern stored in the SA documentation
in ArchiMind semantic wiki can be directly accessed, listed,
or embedded in other online systems used in the software de-
velopment lifecycle, e.g., via HTML, browsers, or CURL, on
URI http://www.archimind.nl/archimindLOD/index.php/view/
r/sadocontology1.owl:Client_server_pattern.

1The SA document content can be read in Wikipages in ArchiMind.

The client-server pattern that is accessible via URI, can
also be referenced and retrieved by other online systems via a
SPARQL query sent to ArchiMind’s SPARQL query endpoint.
The URL of the SPARQL query endpoint in ArchiMind is
http://www.archimind.nl/archimindLOD/index.php/sparql.

The SPARQL query endpoint in AchiMind allows online
systems to query the AK in the SA documentation as Linked
Open Data, and retrieve the query results outside of Archi-
Mind. The online systems can query and retrieve all the AK
in ArchiMind, combine it with the AK or information in the
online system, show the AK to users in their user interface.
This supports software project activities that involve the use
of AK without requiring professionals to navigate to and use
ArchiMind as a separate tool to retrieve AK.

Our prototype tool, called AK-Finder, uses the SPARQL
query endpoint in ArchiMind. The relationship between AK-
Finder and ArchiMind is depicted in Figure 1. AK-Finder can
be accessed at http://softcode.nl/AK-Finder/index.php (on a
separate server from the installation of ArchiMind semantic
wiki). See https://github.com/kadevgraaf/AK-Finder for the
source code of AK-Finder on GitHub.

Fig. 1. Overview - Relationship between AK-Finder and ArchiMind

AK-Finder is written in PHP, HTML, and Javascript. These
technologies were chosen because they are commonly used
in web development, which allows many people to adapt,
derive from, refactor, and host our code. To communicate with
the SPARQL query endpoint in ArchiMind, AK-Finder makes
uses of the sparqllib.php (made by Christopher Gutteridge).

Our tool can be extended to work with systems built in
PHP and our tool can be embedded in webpages using an
Iframe. For systems that are built in other programming
languages there are other libraries to make use of ArchiMind’s
SPARQL query endpoint, e.g., RDFLIB for Python-based
systems. Systems used in the software project lifecycle may
include libraries such as sparqllib.php and RDFLIB and add
functions to query the AK in ArchiMind, combine the retrieved
AK with AK and other information in the online system, and
thereby support users in activities involving retrieval of AK.

AK-Finder has three interfaces (separate webpages) that
support three software project activities; architecture documen-
tation review, architecture design activities, and development
activities, which are detailed on in the next sections.

http://www.archimind.nl/archimindLOD/AKontologyLegend.png
http://www.archimind.nl/archimindLOD/AKontologyLegend.png
http://www.archimind.nl/archimindLOD/index.php/view/r/sadocontology1.owl:Client_server_pattern
http://www.archimind.nl/archimindLOD/index.php/view/r/sadocontology1.owl:Client_server_pattern
http://www.archimind.nl/archimindLOD/index.php/sparql
http://softcode.nl/AK-Finder/index.php
https://github.com/kadevgraaf/AK-Finder


A large textarea inputbox in the three interfaces of AK-
Finder allows users to edit and execute complete SPARQL
queries directly. A screenshot of the review interface in Figure
2 shows the textarea for editing SPARQL queries. Lopez et
al. argued in [15] that configuration of SPARQL queuries in
a user interface is feasible.

A. Architectural Review Interface in AK-Finder

In a previous study [8] we applied the review approach in
[6] by answering five SEI (Software Engineering Institute)
architecture review questions from the semantic wiki. These
review questions are part of a structured approach for review-
ing architecture documentation proposed in an SEI technical
note by Nord et al. in [6].

We implemented five SEI review questions in SPARL
queries. In the review interface of our tool (see Figure 2) these
SPARQL queries are sent to the SPARQL query endpoint in
ArchiMind semantic wiki, and the endpoint returns the same
query results as if they were executed in ArchiMind.

The SPARQL queries for answering the SEI review ques-
tions are shown in Appendix A and below. Other online sys-
tems, systems used by professionals in the software lifecycle
or more generic systems that use SPARQL endpoints such as
yasgui.org, can send the same queries in Appendix A to the
endpoint in ArchiMind, and will get the same results.

Listing 1 shows how SEI Question 3 is answered. It needs
the prefix "rdf " and "AKO" from Listing 2 in Appendix A.
?patterns is a variable name which is used to store output
of the query. The query matches triples (subject, predicate,
object) in the knowledge base (the semantic wiki) by search-
ing for any subject (variable ?patterns) that has predicate
rdf:type and object AKO:Pattern. The query retrieves all
instances of class (or "rdf:type") ’Pattern’ in the AK ontology
(prefix "AKO", see Section II and http://www.archimind.nl/
archimindLOD/AKontologyLegend.png ) in ArchiMind.

SELECT ?patterns
WHERE {?patterns rdf:type AKO:Pattern}

Listing 1. SPARQL query for Question 3: Which architectural patterns are
described in the architecture?

To improve usability, and eliminate the cost of rewriting
SPARQL queries, we created buttons via which users of
AK-Finder can execute the predefined SPARQL queries for
architecture review (see Figure 2 in Appendix A). A software
professional using the SPARQL queries does not need to know
the intricate details of the AK ontology to formulate queries.
This aims to reduce errors and save time when a professional
is unfamiliar with an AK ontology or SA document content.

After a user presses one of the buttons to execute a
predefined query, the results of the query, i.e., answers to
SEI review questions, are shown in a table. Each column in
the table lists query variables ("?some_variable_name" in the
queries), e.g., a class instance or relationship name, and each
row lists variables that are related to each other. Most results
are URIs that include the name of AK, which users can click
to see the AK in more detail in ArchiMind semantic wiki. The

SPARQL query that was executed is shown in a large textarea
which allows users to adapt the query or write a new query.

An architect working in AK-Finder, or a modeling or
CASE tool which integrates AK-Finder, could, for example,
perform SEI architecture documentation review Question 4
(see Appendix A): Is the relationship between requirements
documented and understood? [6] by querying AK stored in
ArchiMind Semantic wiki. The architect does not need to
switch to ArchiMind to perform the architecture documen-
tation review, but can retrieve related AK and perform review
of a specific requirement in AK-Finder, or in a modelling or
CASE tool which integrates AK-Finder. The end of Appendix
A details on a comparison between AK retrieval using standard
semantic wiki features and AK retrieval using AK-Finder, to
indicate possible benefits of predefined queries in AK-Finder.

Moreover, users can adapt the topics of two predefined
SPARQL queries in a dropdown box. This allows users to
answer the same type of question with a different topic. For
example, instead of answering SEI Question 4 to find the
requirements related to ’Compatibility’, a user can use the
dropdown to retrieve requirements related to ’Maintainability’.

The last predefined query also retrieves a reference to a
DBpedia entry that is related to a pattern stored in ArchiMind
Next to referencing, AK from multiple sources queried and
combined by adapting the SPARQL query endpoint on line
21 of query.php in the AK-Finder code (https://github.com/
kadevgraaf/AK-Finder).

B. Interface for design activities

This interface shows how design activities can be supported
by integrating querying of AK in tools in the software project
lifecycle. A dropdown box select element allows users (e.g.,
architects and designers) to retrieve AK elements of a cer-
tain type (class in an ontology) and then retrieve additional
information and relationships of the previously retrieved AK
elements. The underlying code and queries can be adapted to
dynamically list AK of a certain type or retrieved information
about individual AK elements based on data or based on the
selected interface in a design or CASE tool in the software
project lifecycle.

One predefined query identifies requirements that are not
realized by at least one element in the architecture. Another
predefined query identifies which requirements are not yet
addressed by a decision. Based on this identification a user
can start work on defining requirements, making decisions, or
interrelating the requirements and decisions to other AK.

C. Interface for development activities

This interface shows two examples of development tasks
involving work on two components. Hyperlinks which trigger
SPARQL queries allow users to visit related AK in ArchiMind
and retrieve AK to show requirements and decisions related
to the components. If no related requirements or decisions
are retrieved then a message indicating an architectural rule
violation is shown. The interface illustrates how integration of
AK from ArchiMind to an IDE or case tool is possible - the

http://www.archimind.nl/archimindLOD/AKontologyLegend.png
http://www.archimind.nl/archimindLOD/AKontologyLegend.png
https://github.com/kadevgraaf/AK-Finder
https://github.com/kadevgraaf/AK-Finder


code and queryies can be adapted to dynamically add tasks
and generate queries based on data or the selected interface
in an IDE or CASE tool, for example, to show AK about a
component whilst working on code in that specific component.

IV. RELATED WORK

In [15] and [16] Lopez et al. used SPARQL queries for the
implementation of a tool for visualising, sharing, and reusing
non-functional requirements and design rationale in the NDR
ontology. One SPARQL query is listed in [16], which relates
arguments to a decision. Our direct use of SPARQL queries
in an external tool (AK-Finder) to retrieve AK stored in
a semantic wiki as linked open data via a SPARQL query
endpoint is different to the work in [15] and [16].

In [17] Tang et al. use inline queries in Semantic Media
Wiki (SMW), to support traceability for requirements speci-
fications and architecture design. The inline SMW-queries in
[17] have SMW-specific syntax which differs from our use
of generic SPARQL query syntax. Querying via SPARQL is
proposed in [17], which is possible via an SMW-extension.

OntoWiki, on which ArchiMind is based, has been used in a
study on Distributed Requirements Elicitation by Lohmann et
al. in [18] and Semantification of Requirements Engineering
in [12]. Their approach for semantifying requirement and
publishing these as Linked Open Data is similar to our
approach, however, we also provide a tool that makes use
of the AK published as linked open data and we focus on
other types of AK and describe queries to support architec-
ture documentation review. The study in [18] demonstrates
the suitability of OntoWiki, and derived tools, for software
architecture knowledge management.

V. CONCLUSIONS AND FUTURE WORK

AK retrieval can be difficult and error-prone, even from
SA documentation in a semantic wiki with exploration and
browsing features. The AK-Finder tool allows users to execute
predefined knowledge queries. In this work, we use the SEI
architecture review approach as an example to illustrate how
AK-Finder works. Through AK-Finder, users can retrieve AK
to evaluate architecture design. The tool hides the complexity
of SPARQL and the ontology from everyday users.

Predefined SPARQL queries implemented in AK-Finder re-
trieve AK about various aspects of a software project. Specific
search inputs such as dropdown boxes and a text input allow
users to specify the information that is sought. By using such
implementations they can easily query the knowledge base to
understand the intricate details of an architecture design.

Our implementation of AK-Finder and use of the SPARQL
query endpoint of ArchiMind semantic wiki demonstrates
how tools used in the software project lifecycle can integrate
and improve access to AK stored in ontology-based software
architecture documentation.

In future studies we plan to investigate the use of SPARQL
queries for more AK retrieval activities, additional complete-
ness checking of AK, and estimate costs and benefits of using
SPARQL queries in software projects.

VI. ACKNOWLEDGMENTS

This research has been partially sponsored by the Dutch
”Regeling Kenniswerkers”, project KWR09164, ”Stephenson:
Architecture knowledge sharing practices in software product
lines for print systems” and by the Natural Science Foundation
of China (NSFC) project No. 61472286 "CSAAD: Combining
Software Architecture and Agile Development".

REFERENCES

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford, Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[2] P. Lago and P. Avgeriou, “First workshop on sharing and reusing
architectural knowledge,” ACM SIGSOFT Software Engineering Notes,
vol. 31, no. 5, pp. 32–36, 2006.

[3] D. Rost, M. Naab, C. Lima, and C. von Flach Garcia Chavez, “Software
architecture documentation for developers: A survey,” in European
Conference on Software Architecture (ECSA). Springer LNCS, 2013,
pp. 72–88.

[4] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging
the gap between software architecture rationale formalisms and actual
architecture documents: An ontology-driven approach,” Science of Com-
puter Programming, vol. 77, no. 1, pp. 66–80, 2012.

[5] K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet, “How organisation
of architecture documentation affects architectural knowledge retrieval,”
Science of Computer Programming - Special Issue on Knowledge-based
Software Engineering, vol. 121, pp. 75–99, March 2016.

[6] R. L. Nord, P. C. Clements, D. Emery, and R. Hilliard, “A structured
approach for reviewing architecture documentation,” SEI, Software En-
gineering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-
2009-TN-030, 2009.

[7] K. A. de Graaf, “Annotating software documentation in semantic wikis,”
in Proceedings of the fourth workshop on Exploiting semantic annota-
tions in information retrieval, ser. ESAIR ’11. ACM, 2011, pp. 5–6.

[8] K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, and H. van Vliet,
“An exploratory study on ontology engineering for software architecture
documentation,” Computers in Industry, vol. 65, no. 7, pp. 1053 – 1064,
2014.

[9] S. Auer, S. Dietzold, and T. Riechert, “Ontowiki a tool for social,
semantic collaboration,” in 5th International Semantic Web Conference.
Springer LNCS, 2006, vol. 4273, pp. 736–749.

[10] K. A. de Graaf, P. Liang, A. Tang, and H. van Vliet, “Supporting archi-
tecture documentation: A comparison of two ontologies for knowledge
retrieval,” in International Conference on Evaluation and Assessment in
Software Engineering (EASE). ACM, 2015, pp. 3:1–3:10.

[11] I. Polikoff, “Comparing sparql with sql,” http://www.topquadrant.com/
2014/05/05/comparing-sparql-with-sql/, 2014.

[12] S. Lohmann, P. Heim, S. Auer, S. Dietzold, and T. Riechert, “Seman-
tifying requirements engineering – the softwiki approach,” in Proceed-
ings of the 4th International Conference on Semantic Technologies (I-
SEMANTICS 08), 2008, pp. 182–185.

[13] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American Magazine, vol. 284, no. 5, pp. 34–43, 2001.

[14] T. Berners-Lee, “Linked data,” http://www.w3.org/DesignIssues/
LinkedData.html, 2006.

[15] C. López, L. M. Cysneiros, and H. Astudillo, “Ndr ontology: Sharing
and reusing nfr and design rationale knowledge,” in Proceedings of
the 2008 First International Workshop on Managing Requirements
Knowledge (MARK). IEEE, 2008, pp. 1–10.

[16] C. López, P. Inostroza, L. M. Cysneiros, and H. Astudillo, “Visualization
and comparison of architecture rationale with semantic web technolo-
gies,” J. Syst. Softw., vol. 82, pp. 1198–1210, August 2009.

[17] A. Tang, P. Liang, V. Clerc, and H. van Vliet, “Supporting co-
evolving architectural requirements and design through traceability and
reasoning,” in Relating Software Requirements to Software Architecture.
Springer, 2011, pp. 59 – 85.

[18] S. Lohmann, T. Riechert, and S. Auer, “Collaborative development of
knowledge bases in distributed requirements elicitation,” in Software
Engineering 2008, 2008, pp. 22–28.

http://www.topquadrant.com/2014/05/05/comparing-sparql-with-sql/
http://www.topquadrant.com/2014/05/05/comparing-sparql-with-sql/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html


APPENDIX A
IMPLEMENTATION OF SEI ARCHITECTURE REVIEW

We implemented 5 SEI (Software Engineering Institute) ar-
chitectural review questions (see Figure 2). Listing 2 shows
the prefixes we used in the SPARQL queries. These prefixes
are shorthands for the ontology constructs that we use in our
SPARQL queries. RDF syntax and RDF Schema allow use of
their constructs, e.g, rdf:type and rdfs:subClassOf to query for
classes. ’AKO’ contains concepts from the AK ontology (see
Section II).

PREFIX AKO: <http://www.archimind.nl/archimindLOD
/index.php/view/r/sadocontology1.owl:>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-
schema#>

Listing 2. Prefixes for used SPARQL queries

Listing 3 shows the SPARQL query to answer Question 1.
All subclasses of ’Architecture’ are retrieved in the first line
of the WHERE statement, and in the next line all instances
of these classes are retrieved. This returns instances of class
’Layer’, ’Data store’, etc. In the third line all instances of
class ’Component’ are retrieved. The aforementioned instances
are implementation units in our AK ontology. The retrieved
implementation units are finally matched by any relationship
(predicate variable ?p) between them. In the AK ontology all
relationships between the implementation units (i.e., instances
of subclasses of Architecture) are development dependencies.

SELECT ?components ?p ?impl_units
WHERE { ?impl_unit_class rdfs:subClassOf AKO:

Architecture .
?impl_units rdf:type ?impl_unit_class .
?components rdf:type AKO:Component .
?impl_units ?p ?components }

Listing 3. SPARQL query for Question 1: List ten development dependencies
between implementation units.

Above query results in 17 correct2 results for Question 1,
whilst 10 correct results are needed (due to experiment timing
constraints in [10]3. The amount of SPARQL query results
can be limited to 10, in order to match Question 1 exactly,
by adding "LIMIT 10" at the end of the query. The same
holds for the SPARQL query for Question 5 discussed later in
this section. On the other hand, the query can be extended
via UNION constructs to include all relationships to other
implementation units, e.g., datastores. The query in Listing
4 extends Listing 3 to add more results.

UNION {?impl_unit_class rdfs:subClassOf AKO:
Architecture .

2We used the answers of the SA document authors to the five questions in
the experiment in [10] to set a ground truth of correct and incorrect results.

3due to which we considered 10 correct results as being perfect precision
and recall for the question in this setting. Also see [10].)

?impl_units rdf:type ?impl_unit_class .
?datastores rdf:type AKO:Data_store .
?impl_units ?p ?datastores }

Listing 4. Extension of SPARQL query for Question 1 with data stores

The query in listing 5 answers Question 2 by retrieving
all instances that have a certain relationship to requirement
’Security’. These relationships (e.g., results_in, realized_by)
in the AK ontology relate instance ’Security’ to instances of
decisions (class ’Design Issue’) and instances of the subclasses
of Architecture, i.e., implementation units.

SELECT *
WHERE {
{AKO:Security AKO:results_in ?impl_units} UNION
{AKO:Security AKO:realized_by ?impl_units} UNION
{AKO:Security AKO:depends_on ?decisions} UNION
{AKO:Security AKO:addressed_by ?decisions}}

Listing 5. SPARQL query for Question 2: Which implementation units and
decisions are explicitly related to requirement ’Security’?

The query in Listing 6 for Question 4 first retrieves all
instances of class ’Functional Requirement’, and from these
we select the subset of instances that have a relationship to
requirement ’compatibility’. The result is combined, using a
UNION construct, with the results of a second (similar) sub-
query that finds relationships originating from requirement
compatibility.

SELECT ?FuncReq
WHERE {{?FuncReq rdf:type AKO:

Functional_requirement .
?FuncReq ?p AKO:Compatability} UNION
{?FuncReq rdf:type AKO:Functional_requirement .
AKO:Compatability ?p ?FuncReq }}

Listing 6. SPARQL query for Question 4: Which functional requirements are
related to non-functional requirement ’compatibility’?

To answer Question 5 we first have to retrieve all concerns of
the stakeholders. Next we retrieve all wikipages that contain
knowledge about these concerns.

SELECT DISTINCT ?wikipage
WHERE {?concern rdf:type AKO:Concern .
?concern AKO:knowledge_is_located_in ?wikipage}

Listing 7. SPARQL query for Question 5: Find ten wikipages in which the
concerns of the stakeholders are addressed (not just listed).

The AK ontology does not support relationships or proper-
ties to make explicit whether a concern is addressed or only
listed on a wikipage. Therefore the query for Question 5 in
Listing 7 returns a partially incomplete and partially incorrect
answer, i.e., imperfect recall and precision. This means we
need more specific relationships in the ontology to support
the SPARQL query for Question 5. Adding a relationship
’addressed in’ between class ’Concern’ and ’Wikipage’ in
the AK ontology and subsequent semantic annotation of the
SA document content would provide a complete and correct
answer via the query.



Fig. 2. AK-Finder User Interface for Architectural Documentation Review with predefined SPARQL queries, (abbreviated) query results, and query editor.

Comparison Between Predefined Queries in AK-Finder
and Manual Knowledge Traversal in ArchiMind

semantic wiki
The five SEI architecture review question for which AK-Finder
provides predefined SPARQL queries were also answered
using standard semantic wiki features during an experiment
in [10]. The experiment participants in [10] used the same
ontology and same SA documentation in ArchiMind semantic
wiki that AK-Finder queries via the SPARLQ query endpoint.
Instead of predefined SPARQL queries in AK-Finder the
participants used the standard features of ArchiMind semantic
wiki, including navigation and listing of classes, semantic rela-
tionships, and instances, as well as keyword search, browsing,
faceting, filtering, and semantic annotations in wikipages. See
[5] and http://archimind.nl/archimindLOD/ for details and a
demo of these features, and see [10] for more details and
motivation around the retrieval task in the experiment.

Table I shows the efficiency (’seconds’) and effectiveness
(’F1score’) of participants answering the 5 SEI questions in
the previous experiment in [10]. On average AK-Finder returns
answers to the SPARQL queries in less than a second (often
around 100 milliseconds) with perfect precision and recall (F1

TABLE I
TIME-EFFICIENCY (SECONDS), EFFECTIVENESS (F1 SCORE) OF MANUAL

RETRIEVAL BY PARTICIPANTS IN [10] USING SEMANTIC WIKI

SEI Question 1 2 3 4 5
Efficiency (time) 1278 376 117 229 366
Effectiveness (F1 Score) 0.32 0.63 0.79 0.75 0.60
Number of measurements 19 15 12 12 10

score: 1.0) for all questions except Question 5. Even though
the AK ontology lacks a semantic relationship to correctly
and completely answer Question 5 via the SPARQL query, the
query was still more effective (F1 score: 0.89) than retrieval
via standard semantic wiki features (F1 score 0.6).

This comparison between manual retrieval from a semantic
wiki and use of predefined queries in AK-Finder is unfair,
since we do not include the time-cost of writing the predefined
queries. However, it gives an indication of possible benefits of
predefined SPARQL queries in AK-Finder in terms of more
correct and complete answers, and time-savings when the
queries are used very often, thereby having a return on the
time-investment of writing predefined queries.

http://archimind.nl/archimindLOD/

	Introduction
	Background and Materials
	AK-Finder - Querying Architectural Knowledge as Linked Open Data
	Architectural Review Interface in AK-Finder
	Interface for design activities
	Interface for development activities

	Related Work
	Conclusions and future work
	Acknowledgments
	References
	Appendix A: Implementation of SEI architecture review

