
Computers in Industry 65 (2014) 1053–1064
An exploratory study on ontology engineering
for software architecture documentation

K.A. de Graaf a,*, P. Liang a,b, A. Tang c, W.R. van Hage d, H. van Vliet a

a VU University Amsterdam, Amsterdam, The Netherlands
b Wuhan University, Wuhan, China
c Swinburne University of Technology, Melbourne, Australia
d SynerScope B.V., Eindhoven, The Netherlands

A R T I C L E I N F O

Article history:

Received 20 June 2013

Received in revised form 11 April 2014

Accepted 16 April 2014

Available online 27 May 2014

Keywords:

Ontology engineering

Software architecture

Software ontology

Ontology-based documentation

Knowledge acquisition

Knowledge management

Abbreviations:

SA, software architecture

AK, architectural knowledge

HTML, hypertext markup language

WYSIWYG, what you see is what you get

GUI, graphical user interface

CF, contextual factor

A B S T R A C T

The usefulness of Software Architecture (SA) documentation depends on how well its Architectural

Knowledge (AK) can be retrieved by the stakeholders in a software project. Recent findings show that the

use of ontology-based SA documentation is promising. However, different roles in software development

have different needs for AK, and building an ontology to suit these needs is challenging. In this paper we

describe an approach to build an ontology for SA documentation. This approach involves the use of

typical questions for eliciting and constructing an ontology. We outline eight contextual factors, which

influence the successful construction of an ontology, especially in complex software projects with

diverse AK users. We tested our ‘typical question’ approach in a case study and report how it can be used

for acquiring and modeling AK needs.

� 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d
1. Introduction

For a Software Architecture (SA1) to be useful, it needs to be
understood [1] and effectively communicated between its
designers and its users [2]. Documenting the Architectural
Knowledge (AK) in a SA facilitates its communication and
understanding. AK can be defined as ‘‘the integrated representation

of the software architecture of a software-intensive system (or a family

of systems), the architectural design decisions, and the external

context/environment’’ [3].
* Corresponding author. Tel.: +31 6 18 47 91 32

E-mail addresses: ka.de.graaf@vu.nl (K.A. de Graaf), liangp@cs.vu.nl (P. Liang),

atang@swin.edu.au (A. Tang), willem.van.hage@synerscope.com (W.R. van Hage),

hans@cs.vu.nl (H. van Vliet).
1 See ‘Abbreviations’ under Article Info for a list of abbreviations used in this paper.

http://dx.doi.org/10.1016/j.compind.2014.04.006

0166-3615/� 2014 Elsevier B.V. All rights reserved.
It is common for AK to be documented in file-based
documents such as text files, diagrams, source code, and meeting
notes. This however introduces practical limitations as it is hard
to describe AK unambiguously and comprehensively for all of its
different uses. Additionally, AK is highly interrelated, making it
hard to support the needs of different users by a single document
indexing structure.

In order to address these limitations, we study ontology-based
SA documentation, in which AK is made explicit and unambiguous
by applying a semantic structure. An ontology refers to a formal
domain model describing its concepts and relationships among
concepts [4]. In [5] de Graaf et al. report on a controlled experiment
that was conducted in a large and complex industrial software
project. The results provided empirical evidence that ontology-
based SA documentation is more effective and efficient for AK
retrieval than file-based SA documentation.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.04.006&domain=pdf
http://dx.doi.org/10.1016/j.compind.2014.04.006
mailto:ka.de.graaf@vu.nl
mailto:liangp@cs.vu.nl
mailto:atang@swin.edu.au
mailto:willem.van.hage@synerscope.com
mailto:hans@cs.vu.nl
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2014.04.006


K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641054
The authors of this paper had to implement ontology-based SA
documentation in the software project in which this industrial
experiment was executed. To do so, we had to consider what
ontology engineering approach would be suitable. This paper is
about building the ontology structure for ontology-based SA
documentation. It is not about instantiating (or ‘populating’) this
ontology or about the experiment in which the ontology was
populated, as described in [5].

Developing an ontology for a software project in industry
should be economically feasible, i.e. it should be efficient and
accurate, for organization and individual users [6]. If the ontology
is inaccurate, documentation users will not retrieve or understand
the AK that they need. Users would lose interest and confidence in
ontology-based SA documentation, and revert to other means to
get the required AK.

In the context of large software projects it can take much time
and effort to develop an accurate ontology. Knowledge acquisition
from many diverse stakeholders, each having their own needs and
views [1] of AK, is required to build an accurate ontology. These
users of AK are generally pressed for time and their primary
interest is seldom about making documentation. Moreover, the AK
needed by users in large software projects is often domain specific
and complex.

Developing the ontology is not a one-time effort because the
AK needs of SA documentation users shift over time. For example,
during development users will be interested in AK that relates
requirements to the components implementing those require-
ments, while during integration testing (other) users might
be interested in relations between software releases and
requirements coverage. Shifting AK needs necessitates a regular
evaluation and revision of the constructed ontology.

In this paper we describe eight contextual factors in software
projects. These contextual factors influence ontology engineering
for SA documentation, especially in large and complex projects. We
devised a ‘typical question’ approach for ontology construction
that takes the contextual factors in large and complex software
projects into account. In this approach typical questions about AK
are acquired from SA documentation users and used to build an
ontology. These typical questions are frequently asked by AK
users2 during their everyday tasks, i.e. questions that represent
their everyday AK needs.

We applied the ‘typical question’ approach in an exploratory
industrial case study which provided several insights. In the case
study we explored how well our ‘typical question’ approach was
applied to construct a useful ontology by acquiring and modeling
AK needs of many diverse users that use SA documentation in
different projects and product lines. The ‘typical question’
approach can continuously refine the AK ontology when AK needs
evolve.

This paper is motivated by the lack of applied ontology
engineering approaches for constructing an ontology for SA
documentation. We make the following contributions:

� Illustrate a ‘typical question’ approach for constructing the
ontology used in ontology-based SA documentation.
� Outline important contextual factors that influence ontology

engineering for SA documentation in software projects.
� Demonstrate how the ‘typical question’ approach can be applied

through an exploratory case study in an industry software
project.

This paper is organized as follows. Background of ontology-
based SA documentation, ontology engineering, knowledge
acquisition, and Grounded Theory is given in Section 2.
2 We consider AK users the same as SA documentation users in this work.
Section 3 describes our ‘typical question’ approach for ontology
construction. Section 4 describes the contextual factors that
influence ontology engineering for SA documentation in software
projects. Section 5 reports the exploratory case study and the
lessons learned from it. Section 6 presents related work and
Section 7 concludes this paper.

2. Background

2.1. Ontology-based SA Documentation

Many relationships exist between AK in SA documentation, e.g.,
between requirements, decisions, and components. Consider a
single decision recorded in a document. A software engineer needs
to know how the decision impacts components and interfaces s/he
is working on. When evaluating the decision a software architect is
interested in its rationale, alternatives, related decisions, and
related requirements. A quality assurance manager might need to
know all quality attributes that the decision impacts or vice versa.

The linear organizational nature of file-based documentation
makes it hard to provide a structuring of AK that is suitable for
every user. This structuring can be done using views [1],
perspectives, or some other sectioning in a Table of Contents.
However, once written down, the structuring of AK becomes static
and linear in file-based documentation causing difficulties for
users that want to retrieve AK that is unsupported by the structure.
Furthermore, it can be troublesome to describe AK unambiguously
in documentation, i.e. clearly, consistently, with explicit notations
for AK and AK interrelations, especially when documentation and
AK evolves.

On the other hand, an ontology provides a type of AK
structuring which facilitates AK retrieval by different types of
documentation users. Knowledge in an ontology can be searched
by concepts and reasoned with. The type (or ‘class’) of AK becomes
explicit in an ontology and the relationships between AK have
explicit semantics, e.g., ‘realized by’ and ‘results in’. This improves
the efficiency and effectiveness of AK retrieval [5].

Users of ontology-based SA documentation can retrieve AK
using a semantic wiki [7] or plug-ins in text-editors [8]. Semantic
wikis allow for web-based visualization and management of
(ontology and its instances in) knowledge bases and semantic-
enhanced search facilities such as graph-like exploration,
faceting, and filtering of knowledge instances based on semantic
interrelations.

An advantage of ontology-based documentation in a semantic
wiki over traditional wiki and hypertext systems is the use of
semantic relationships. Hyperlinks provide pointers to information
but the pointers do not specify the meaning of relationships.
Whereas semantic relationships can be specified in ontology-
based documentation, each with an explicit name, type, and
meaning. Moreover, one can assign formal properties to semantic
relationships, e.g., transitivity and symmetry, which allow for
automatic inference and reasoning.

The ontology-based SA documentation that was used in the
experiment in [5] consists of a semantic wiki (see http://
archimind.nl/archimind/) in which fragments, sections, and
diagrams from file-based SA documentation are stored as HTML
in wikipages. Basic version control, a WYSIWYG editor to update
wikipage content, and change history, support maintenance
activities. Using semantic annotation, the AK in wikipage content
(e.g., a description of ‘GUI’) is highlighted and instantiated as
belonging to a class of AK (e.g., component) and having relation-
ships (e.g., ‘satisfies’) to other AK (e.g., requirement ‘login’).

When an AK user views an AK instance, e.g., GUI, s/he can clearly
see that GUI is a component, with relationship ‘satisfies’ to
requirement login, and what SA documentation text (in wikipages)

http://archimind.nl/archimind/
http://archimind.nl/archimind/


K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–1064 1055
details on GUI. A user viewing (a list of) AK instances can see what
wikipages describe each of the AK instances. This makes AK
traceable across SA documentation content in a project or multiple
projects.

The experiment in [5] involved AK users answering questions
such as ‘‘what decisions have been made around component XX’’.
Use of the ontology-based approach (with semantic wiki)
to retrieve AK was more efficient and effective than use of a
file-based approach. The underlying reason is that experiment
participants used more fitting organisation and explicit AK
descriptions in the ontology-based approach compared to the
file-based approach.

Lopez et al. report evidence in [9] that ontology-based SA
documentation improves efficiency and effectiveness when
retrieving design rationale from SA documents. Jansen et al.
provide evidence in [8] that use of ontology-based documentation
leads to increased architectural understanding during architectur-
al reviews. Su et al. propose use of an ontology for visualization and
non-linear navigation of SA documentation which reduces the
cognitive load on its users [10].

2.2. Ontology engineering for SA documentation

The ontology used in ontology-based SA documentation
determines what AK one can retrieve using its structure and
semantics. One can use a predefined ontology (as in [7]) or build an
ontology specifically for a software project domain. A domain
specific ontology can be built, e.g., by letting document authors
and architects identify AK concepts in existing SA documentation
[8].

The approach proposed by Jansen et al. in [8] is, to our current
knowledge, the only approach aimed at deriving a domain specific
ontology for ontology-based SA documentation. Their use of
existing documentation however has several limitations:

� Existing SA documentation might not be available.
� Existing SA documentation might not convey the AK needed by

all SA documentation users.
� Experts that identify AK concepts from SA documentation might

not know the AK needs of all users.

Building and maintaining an ontology for a certain domain
(such as in this case the domain of AK) is called ontology
engineering. An overview of the ontology engineering phases,
adapted and simplified from [11], is depicted in Fig. 1. Arrows in
this figure represent a transition to another phase.

The process starts with the domain analysis phase which
includes identification of the domain scope and the AK needs of
users of SA documentation.

AK concepts are derived from AK needs and used to build a
domain ontology in the conceptualization phase. The quality of the
constructed ontology is then evaluated in the evaluation phase.
Domain analysis, conceptualization and evaluation is iterated until
a satisfactory ontology is obtained.

After construction the ontology is used to annotate and retrieve
AK from SA documentation. The ontology is maintained to cope
with evolving AK needs and concepts.
Fig. 1. Ontology engineering phases.
2.3. Knowledge acquisition

Building an AK ontology requires knowledge acquisition during
the ontology engineering phases described in the previous section.
Knowledge acquisition is part of building knowledge-based
systems in general. The suitability of knowledge acquisition
approaches differs per domain. A separation can be made between
top-down, middle-out and bottom-up approaches.

Top-down approaches start modelling based on a general
model, with extension and refinement to suit specific needs. These
approaches can be efficient and accurate for well-defined domains
in which an ontology engineer knows quite well about the general
concepts, questions, tasks, and use-cases. Bottom-up approaches
are used to build a model based on specific domain knowledge.
These are suitable for domains in which an ontology engineer
cannot predetermine all the concepts, questions, tasks, and use-
cases. Such domains can be broad, multidisciplinary, or novel.
Middle-out approaches combine a top-down and bottom-up
approach. These work well for domains that are partially well-
defined and partially specific.

2.4. Grounded Theory

Our ‘typical question’ approach makes use of coding techniques
from Grounded Theory in which a domain theory is generated by
empirical generalization [12]. This is a bottom-up approach to
knowledge acquisition (see previous Section 2.3).

First, data is collected in the domain under investigation, and
patterns that indicate concepts are identified from this data. The
concepts identified are aggregated into categories. Second,
properties of the identified categories are developed by constantly
comparing the categories with collected domain data. These
properties are developed with respect to a ‘core’ or ‘central’
category [13] that is the subject of investigation in the domain.
Memos capture thoughts about the possible concepts, categories,
and relationships in the domain data. Finally, if no new properties
can be identified from domain data (categories are ‘saturated’), the
domain model is compared to literature.

Urquhart et al. discuss several myths about Grounded Theory in
[14] and conclude that Grounded Theory is a rigid and flexible
method that is suitable for use in information systems research.
Grounded Theory is able to generate theories that are relevant to
practitioners [15] and that are ‘grounded in data’ [12].

Grounded Theory can be used during ontology engineering
when analysing a domain and constructing an ontology. An
ontology engineer starts with the collection and analysis of domain
data in the domain analysis phase (see Fig. 1 and Section 2.2).
Similarly, data is collected and analyzed in a domain of interest
when one uses Grounded Theory in the domain analysis phase.
In the ontology conceptualization phase an ontology engineer can
use Grounded Theory to create classes (or ‘categories’) and
relationships between classes.

3. Ontology engineering using the ‘typical question’ approach

We devised an ontology engineering approach that uses typical
questions to create an ontology in the context of a large and
complex project at Océ Technologies.

The ‘typical question’ approach focuses on the elicitation of
questions that AK users normally try to answer during their use of
SA documentation. We want to understand what AK users typically
ask of the SA documentation. Knowing the detailed knowledge
needs of AK users allows one to create SA documentation that is
optimal for its users and therefore cost-effective [16].

The typical questions convey what concepts and relationships
AK users want to retrieve from SA documentation. An ontology



Fig. 2. Overview of the proposed ‘typical question’ approach for ontology engineering.

K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641056
engineer identifies these concepts and relationships on basis of
‘typical questions’ to construct an ontology. This ontology is
subsequently used to support retrieval of the concepts and
relationships from SA documentation.

Fig. 2 depicts an overview of our approach. In this approach the
process of creating an ontology requires one or more steps in each
ontology engineering phase.

In the domain analysis phase of ontology engineering, an
ontology engineer acquires typical questions from documenta-
tion users to capture their AK needs (step 1). In the conceptuali-
zation phase these typical questions are codified (step 2) and
modeled in an ontology (step 3) using coding mechanisms from
Grounded Theory. In the evaluation phase typical questions are
instantiated (step 4) to resolve conflicting interpretations of AK
concepts and to evaluate and improve the constructed ontology
(step 5).

In the ontology use phase, existing file-based documentation is
annotated and the semantic wiki is used for AK retrieval. During
the maintenance phase the techniques to acquire the typical
questions (in step 1) are iterated to detect changes of AK needs and
if the ontology needs to be updated (step 6).

Interviews, daily logging of typical questions, and mailing lists
are techniques that can be used to acquire typical questions. These
are further detailed in Section 4.1.

3.1. Domain analysis phase (step 1)

In the first step of our approach AK needs are identified from all
users, or a representative subset of users, by acquiring their typical
questions about AK. These are questions that are representative of
what AK users ask themselves during their everyday activities, e.g.,
during design, development, quality assurance, testing, etc. For
example, a developer might ask: ‘‘what components and behavior
are impacted by my change in this subsystem?’’. Snippet 1 gives an
example of two typical questions.

Snippet 1. Example of typical questions:

� ‘‘Which module assures adherence to requirement ‘24 –

admin login’?’’

� ‘‘What quality attributes are realized by subsystem ‘transac-

tion handler’?’’

Normally such typical questions are answered by reading
architecture and design documents, inspecting source code, or
consulting colleagues. Instead we use these typical questions in
our approach to build an ontology which in turn provides users
with structure and semantics to answer these typical questions
from ontology-based SA documentation.

A core idea behind the use of typical questions is the
assumption that the AK needed in any use-case, scenario, or task
can be accurately represented as a set of questions that should be
answered. As such, acquiring sets of typical questions allows for a
fine-grained and detailed specification of the AK needed for tasks,
use-cases, and scenarios. Recording or recalling these typical
questions can reduce difficulties for users in articulating domain
knowledge [17], i.e. increase efficiency by reducing effort. This
addresses difficulties in acquiring AK needs of diverse users in a
complex and multi-disciplinary domain.

Benefits can be gained by the use of typical questions that are
(1) efficiently acquired from many users (2) tangible for users, (3)
accurately represent AK needs and daily practice of users, (4) do
not require extensive abstract thinking from users when acquired,
yet (5) convey much conceptual information, and (6) can be used
throughout the ontology engineering phases. These benefits help



Fig. 3. Ideal mapping of coded typical questions into AK ontology structure.

K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–1064 1057
to minimize the effort required from individual users of SA
documentation, as well as the total effort required in complex
domains with many diverse users.

3.2. Conceptualization and Evaluation Phase (Steps 2-5)

In the ontology conceptualization phase an ontology engineer
identifies AK concepts from typical questions in order to build an
ontology. AK concepts are identified from phrases, i.e. one or more
words, in the acquired typical questions. Phrases in typical
questions are classified as representing a class, relationship, or
attribute in the ontology. This is done by applying coding
techniques from Grounded Theory, discussed in Section 2.4.

An ontology engineer starts with open coding in which textual
data, a typical question in this case, is broken down into discrete
parts, e.g., words and phrases. These discrete parts are examined in
detail and classified (or ‘categorized’3) by comparing data for
conceptual similarities and differences [13]. Snippet 2 gives
examples of typical questions in which open coding, or ‘labeling’,
i.e. assigning conceptual names (in italic between square-brack-
ets), is applied to phrases that refer to AK concepts. Various labels
are applied to illustrate possible conceptualizations in open
coding. This process corresponds to the first phase of the overall
process of Grounded Theory described in Section 2.4.

Snippet 2. Example of initial open coding of typical questions:

� ‘‘Which module [module, component, hardware, subsystem]

assures adherence to [constraints, satisfies, realizes] require-

ment ‘24 – admin login’ [functional or non-functional

requirement, Quality Attribute]?’’

� ‘‘What quality attributes [quality attribute, non-functional

requirement] are realized by [constraints, satisfies, realizes]

subsystem ‘transaction handler’ [subsystem, component,

module]?’’

Axial (or ‘theoretical’) coding is then used to (re)assemble and
interrelate the classes, identified during open coding, to their sub
or superclasses. Selective coding is then used to integrate,
interrelate and refine the classified concepts in an ontology based
on the central ‘theme’, ‘idea’, or ‘category’ [13] of the investigation.
This central theme is: ‘‘AK that users need to retrieve from SA

documentation’’.
Axial and open coding are used in the second phase of Grounded

Theory described in Section 2.4. The described coding approach is
based on the method described by Strauss and Corbin in [13].
Snippet 3 shows an example of coded phrases in typical questions
after completion of above coding steps.

Snippet 3. Example of refined codified classes and relationships

in typical questions:

� ‘‘Which component [component (class)] assures adherence to

[satisfies (relationship)] requirement ‘24 – admin login’

[functional requirement (class)]?’’

� ‘‘What quality attributes [non-functional requirement (class)]

are realized by [realized by (relationship)] subsystem ‘trans-

action handler’ [subsystem (class)]?’’
3 The term ‘category’ is used in Grounded Theory literature, however we adopt

the term ‘class’ instead of ‘category’ for consistency with the rest of the paper.
An ontology engineer may decide to execute one or more
iterations of the coding steps, e.g., after evaluation by users. Ideally
the AK concepts in typical questions can be directly mapped to an
ontology structure. This is illustrated in Fig. 3 in which classes are
denoted between square brackets, relationships between angle-
brackets, and instances of classes between single-quotes.

In practice refinement of the AK concepts is needed as not
all users will use the same phrasing for their AK needs in typical
questions. For example, phrases ‘setting’, ‘configuration’, ‘vari-
ability’ and ‘preset’ might all refer to (1) the same AK concept, (2)
distinct yet related AK concepts (e.g., subclasses), or (3) different
AK concepts in the domain. An example for refinement of
relationships between AK concepts is the set of phrases
‘constraints’, ‘required’, and ‘realizes’. Even if the same name
is used for a concept in many typical questions, we cannot
assume based on this frequency that all users have the same
interpretation of this concept. Users might mean different things
with the same phrase.

An ontology engineer evaluates the interpretation of AK
concepts by presenting users with different instantiations of
typical questions that have been coded and classified. Phrases in
these typical questions that have been coded to an ontology class
or relationship are replaced with different instances of the same
class or relationship, e.g., instances ‘requirement X1’, ‘R2 - admin

login’, and ‘Req. 3’ for class requirement. This is akin to validation in
Grounded Theory where respondents in a study comment on how
well the theory, e.g., represented as a ‘story’, fits their case [13].

An ontology engineer subsequently asks users feedback about
the representativeness, correctness, and accuracy of these typical
questions with different instances of AK concepts. This supports
identification of conflicting interpretations of AK concepts (step 5)
between users working in diverse roles and disciplines. Snippet 4
gives the typical questions from Snippet 3 with different instances
of AK concepts.

Presenting typical questions with different instances of AK
concepts allows users to evaluate the concepts in different
contexts. The interpretation of an AK concept may differ
between AK users when they are presented with different
instances of the AK concept. Part of the evaluating users may
remark that ‘‘allow backup scheduling’’ (in Snippet 4) is a non-
functional requirement or feature instead of a functional
requirement. This identifies incorrect or inaccurate classification
of AK concepts in typical questions.

Snippet 4. Example typical questions with instantiated AK

concepts for evaluation:

� ‘‘Which component satisfies functional requirement ‘18 –

allow backup scheduling’?’’’

� ‘‘What non-functional requirements are realized by subsys-

tem ‘Order configuration’?’’



K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641058
Grounded Theory coding allows an ontology engineer to
construct an ontology ‘‘grounded in data’’ with relative high
efficiency and accuracy and without requiring extensive effort
from documentation users. This requires minimal guidance by
domain experts which might not be readily available in many
software projects.

After the ontology is conceptualized an ontology engineer may
decide to compare the ontology to other ontologies, e.g., in
literature. This allows identification of useful domain-independent
AK concepts that may be missing in the constructed domain
specific ontology.

3.3. Ontology maintenance phase (step 6)

When AK needs shift and concepts evolve the ontology has to be
maintained to remain accurate. The ontology engineer can identify
a shift in AK needs by re-acquiring typical questions (step 1). An
ontology engineer then compares the newly acquired typical
questions and those previously acquired. If AK needs have
significantly shifted, steps 2–5 of the approach can be repeated
to update the ontology. Changes in AK concepts are detected in
step 4 of the approach when newly acquired typical questions are
instantiated and evaluated by AK users.

The necessity of reacquiring typical questions should be
estimated or planned at the start of each software project phase.
Estimating the necessity of reacquiring typical questions or the
required accuracy of this reacquisition is outside the scope of this
paper.

4. Contextual factors in ontology engineering

In the introduction section, we briefly described how the
development of an SA documentation ontology is affected by its
users and the software project context. These Contextual Factors
(CF) influence the use of the ‘typical question’ approach. In agile
software development, we learn that contextual factors influence
the successful adoption of agile practices [18]. We recognize that
these factors are also applicable in terms of producing SA
documentation.

Production of SA documentation takes place in the context of
software development projects and the context of a project and its
products is captured in SA documentation. Moreover, users of SA
documentation in a project determine what AK is relevant to
capture in SA documentation. Several characteristics of the SA
documentation users influence how one can most effectively find
out what AK is relevant to these users.

An ontology engineer would need to consider these factors
whilst building a suitable ontology for SA documentation:

CF1 Number of AK users – impacts on the extent of AK needs
acquisition. For example, interviewing a large number of AK
users might be infeasible in a project.

CF2 Accessibility of AK users – communication with AK users can
be constrained by their accessibility, e.g., in terms of location
and schedule.
Table 1
Evaluation of techniques for acquiring typical questions.

Technique for acquiring typical questions Suitable for Conte

Interviews High user accessibi

Daily log Medium user acces

Mailing list Low user accessibil
CF3 Commitment of AK users – influences how much time and
effort users are willing to spend on providing their AK needs
and ontology evaluation.

CF4 Diversity of AK users – the role, experience, and education
background can impact on the interpretation of AK concepts
between users.

CF5 Product domain complexity and specificness – influences the
efforts required of an ontology engineer to understand and
model AK concepts in a very specific and complex software
product domain.

CF6 Product domain multidisciplinarity – impacts on how many
different AK concepts, e.g., from the healthcare, embedded
systems, and chemistry discipline, are needed by AK users.

CF7 Shifting AK needs – Users provide their AK needs based on
their roles and the current tasks. When a project progresses
and their tasks change, these AK needs may shift. Additional
AK needs may be required to enhance an ontology.

CF8 Volatility of AK concepts – AK concepts can change over time.
This affects the accuracy of the AK concepts initially captured
in an ontology.

4.1. Contextual factors influencing the acquisition of typical questions

During the acquisition of typical questions, we noticed that
contextual factors influenced what acquisition techniques we
used. We have used three knowledge acquisition techniques (see
Table 1) in our case study. We summarize, based on our experience,
how contextual factors ‘user accessibility’ and ‘user commitment’
influence the performance of each acquisition technique.

Interviews with AK users allow an ontology engineer to clarify
their responses and thoughts, e.g., using examples, and this allows
an ontology engineer to acquire AK needs. Interviews however
require high commitment, accessibility, and much time and effort
from users and ontology engineer. Relatively high accuracy is
traded off against lower efficiency.

A daily log, in which users consistently record their typical
questions each day, requires a fair amount of accessibility to and
commitment of users. Even though the time-efficiency and
required effort is better than that of interviews, it is less accurate
due to the lack of direct interaction with an ontology engineer.
Accuracy becomes even lower when user commitment is low and
AK needs are not consistently recorded every day.

The use of a mailing list provides time-efficient and effortless
acquisition of typical questions, even with low user commitment
and accessibility. The accuracy of AK needs acquisition is low as
there is no direct interaction between documentation users and
ontology engineer, however, more AK needs can be acquired. The
use of a mailing list can prove to be very suitable for projects with
many users and distributed development. Bürger et al. provide
evidence in [19] that suggests that the use of e-mail is more
efficient than face-to-face meetings.

The use of multiple acquisition techniques at the same time
may be suitable in some situations. For example, interviews and
a mailing list may be used at the same time for acquiring
typical questions from a group of practitioners residing in the
xtual factors Results in

lity and commitment High accuracy and low efficiency

sibility and commitment Medium accuracy and efficiency

ity and commitment Low accuracy and high efficiency



K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–1064 1059
same location as the ontology engineer and another group of
practitioners working elsewhere.

4.2. Contextual factors in the domain analysis phase

During domain analysis an ontology engineer identifies what
AK is needed by SA documentation users. If AK needs are
overlooked documentation users will have less support to
retrieve this AK. The possibilities for acquiring AK needs from
users and the amount of AK needs in a software project influence
how much time and effort is required from the ontology engineer
and AK users for the identification of AK needs.

Large software projects typically have many (CF1) different
(CF4) stakeholders that are users of AK, such as software architects,
engineers, testers, and product managers. AK in large projects is
often multidisciplinary in nature (CF6), conveying views from
many diverse stakeholders who are both users of AK and experts in
their respective domains (CF4).

We need to talk to a lot of AK users before all the AK needs for
their roles (CF4) are clear, especially in complex software projects
(CF5). This becomes difficult when AK users are not accessible
(CF2) or committed (CF3) to cooperate [17] [6].

In our approach typical questions are used to capture domain-
specific AK needs from many diverse users. Formulating questions
requires relatively little effort from users and acquiring questions
can be scaled up in large projects. The accessibility and
commitment of AK users is addressed by selecting one of several
techniques for acquiring typical questions listed in Table 1.

4.3. Contextual factors in the conceptualization and evaluation phase

After AK needs are identified, AK concepts can be derived from
the AK needs and modeled in an ontology. If the ontology is
inaccurate or ambiguous it will not support efficient and effective
AK retrieval.

Conflicting interpretations of AK concepts are likely to occur
with many users [17] (CF1) with diverse roles (CF4) that work from
different disciplines (CF6). An ontology engineer might not have
complete and thorough knowledge of all AK concepts and their
interpretation in a software product domain that is very specific
and complex (CF5). Reuse of a generic ontology is limited in such
domains. Domain experts can help with ontology modeling and
evaluation, yet these experts may be inaccessible (CF2) or
uncommitted (CF3).

In our approach an ontology engineer uses coding techniques
from Grounded Theory to model AK concepts from typical
Table 2
Influence of contextual factors in ontology engineering phases.

Contextual factors Influence

All ontology engineering phases
CF2: Accessibility of AK users Accurate acquisition o

Ontology constructionCF3: Commitment of AK users

Domain analysis phase
CF1: Number of AK users These CFs influence ho

AK needs of users in vCF4: Diversity of AK users

CF5: Product domain complexity and specificness

CF6: domain multidisciplinarity

Ontology conceptualization and evaluation phase
CF1: Number of AK users Conflicting interpretat

each having their own

understanding of all d

from domain experts.

CF4: Diversity of AK users

CF5: Product domain complexity and specificness

CF6: domain multidisciplinarity

Ontology maintenance phase
CF7: Shifting AK needs AK needs of users shif

Maintenance may be CF8: Volatility of domain concepts
questions. This coding process is refined and iterated to improve
the accuracy of ontology modeling without heavily relying on
domain experts. Typical questions are then evaluated by AK users
to verify that AK concepts in the ontology are accurate and
interpreted consistently between AK users. The accessibility and
commitment of AK users is addressed by selecting one of several
techniques listed in Table 1 for acquiring evaluations.

4.4. Contextual factors in the maintenance phase

The AK retrieved by users should remain accurate even when
their AK needs evolve (CF7) and AK concepts evolve (CF8) (Table 2).
Therefore the ontology should be updated accordingly [20].
Updating the ontology should be efficient (1) for economic feasibility
and (2) to prevent of any lag between the moment AK needs and
concepts change and this new AK can be retrieved by users [6].

AK needs shift and AK concepts can become deprecated in a
software project when architecture, design and development
methods change, societal and organizational changes impact the
SA [1], new insights and solutions are found, project phases
progress, or when concepts from the product domain(s) evolve.
This is likely to happen in complex project domains (CF5) involving
many (CF1) diverse (CF4) users working in multiple disciplines
(CF6) that evolve with time. In our approach typical questions are
re-acquired and compared to previously acquired questions to
detect shifting AK needs and AK concepts.

5. An exploratory case study of ontology engineering for SA
documentation

In this exploratory case study [21] on the use of the ‘typical
question’ approach we explore two questions:

� How do the contextual factors in this case study influence the

application of the ‘typical question’ approach?

� How well does the ‘typical question’ approach work in this case

study to construct a useful ontology for SA documentation?

We developed an ontology that was applied to SA documenta-
tion at Océ Technologies, an international leader in digital
document management and a Canon Group company. This SA
documentation specifies the software for document printing
machines developed at Océ Technologies and is used in multiple
projects and product lines.

The documentation for which the ontology was built consists of
7 SA documents with 79 pages in total and is a small yet
f AK needs becomes difficult when AK users are inaccessible or uncommitted.

 and evaluation needs involvement of committed AK users.

w many different AK concepts have to be identified, supporting the

arious roles, disciplines, and product domains.

ions of AK concepts are likely to occur when there are many diverse AK users,

 jargon in their domain and role. An ontology engineer may not have thorough

isciplines and product domain specific concepts, and require assistance

t, e.g., between software project phases and when domain concepts change.

needed to keep the ontology up to date with the AK needs of its users.



4 See http://www.vanrijnswou.nl/owl/ontology.owl.xml for source file.

K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641060
representative subset of the available types of documents in a
project at Océ Technologies. This subset of documents was selected
because of timing constraints for the experiment reported in [5].

The products built at Océ Technologies evolve with market
needs, which introduces a high rate of change (CF8) in their
domain. Their product teams deal with software, firmware and
specific hardware (CF5, CF6) and consist of diverse documentation
users (CF4) such as domain architects, product testers, workflow
architects, etc. Océ applies agile development in a product line
environment. This means that the architectural design and
software project phases iterate rapidly (CF7).

A software professional at Océ estimated that there are well
over 50 users of the SA documentation (CF1). Software projects
typically take place in three locations in Europe. However, our
study was limited to documentation users in one site (CF2). Even
though documentation users were pressed for time, they were
committed to this research project (CF3).

5.1. Domain analysis phase (step 1)

In order to work with the schedule and accessibility of the AK
users at Océ Technologies, we used a mailing list to acquire their
AK needs. We asked SA documentation users to send their typical
questions about AK that they had during their work activities. 7
documentation users, among which software engineers, a software
project manager and a software architect, provided 17 questions.
Snippet 5 gives a subset of the acquired typical questions at Océ.
Parts of these questions are obfuscated for confidentiality reasons.

Snippet 5. Subset of typical questions acquired at Océ:

� ‘‘What is the rationale behind this requirement? (And whom

can we ask?)’’

� ‘‘Which subsystem is responsible for fixing the XX defaults

based on the device configuration?’’

AK needs acquisition during domain analysis using a mailing
list was time- and cost-efficient. Because many users involved in
this case study proved to be accessible and committed the
acquisition was, in retrospect, also relatively accurate (see Table 1
for comparison).

5.2. Conceptualization and evaluation phase (steps 2–5)

After acquisition of typical questions in the Océ case study we
labeled and classified the AK concepts in these typical questions.
Snippet 6 lists three typical questions, two from Snippet 5, that we
acquired. Labels (between square brackets) show the classification
of phrases and words after we applied the coding mechanisms
from Grounded Theory [13].

Snippet 6. Coding of typical questions at Océ:

� ‘‘What is the rationale [‘‘Decision (class)’’] behind [‘‘depends on

(relationship)’’] this requirement [‘‘requirement (class)’’]? (And

who [‘‘stakeholder (class)’’] can we ask?)’’

� ‘‘Which subsystem [‘‘subsystem (class)’’] is responsible for

fixing [‘‘changed by (relationship)’’] the defaults based on the

device [‘‘Device (class)’’] configuration [‘‘setting (class)’’]?’’

� ‘‘I changed the behavior [‘‘behavior(class)’’] of some interface

method [‘‘method(class)’’] after I had convinced myself that

the method [‘‘method (class)’’] was not used at all in other

parts of the system and so the change would have no [‘‘change
task (class)’’] impact [‘‘impacts (relationship)’’]. However, at

the same time another team made functional enhancements

[‘‘change task (class)’’] that relied [‘‘depends on (relationship)’’]

exactly on the *old* behavior [‘‘behavior(class)’’] of that

method [‘‘method(class)’’]. Could I have known that a new

subsystem [‘‘subsystem(class)’’] dependency [‘‘depends on

(relationship)’’] on this method [‘‘method (class)’’] was

upcoming [‘‘change task (class)’’] or was it just bad luck that

these actions [‘‘change task (class)’’] had crossed each other?’’

During coding we found that many words and phrases in the
typical questions could almost directly be translated into relation-
ships and classes, e.g., similar to Fig. 3. We recorded the rationale
for our actions during the coding steps in a document (named ‘field
notes’ or ‘memos’ in Grounded Theory). We instantiated the
classified AK concepts in typical questions, of which two are shown
in Snippet 7.

Snippet 7. Typical questions with instantiated AK concepts at

Océ:

� ‘‘What decision depends on requirement ‘REQ. 23’?’’

� ‘‘Which subsystem changes setting ‘external indication light

color’?’’

Feedback interview sessions were held with a small group of
committed and accessible documentation users in diverse roles.
These documentation users evaluated the classified and interre-
lated AK concepts and resolved conflicting interpretations. A
software designer and software engineer each evaluated 7
questions with instantiated AK concepts on their accuracy as well
as their relevancy and representativeness for the roles in the
project. A software architect provided feedback on the interpreta-
tions of several AK concepts. These interviewees did not partake in
providing the typical questions. Below is a summary of how a
conflict between the interpretations of ‘behavior’ and ‘feature’ was
resolved:

The AK concepts ‘behavior’ and ‘feature’ are on different abstraction

levels and used by users in different roles: ‘Feature’ is similar in

meaning to ‘behavior’, but is a term adopted by users that work

from a business perspective.

‘behavior’ is adopted as the primary representation of the AK

concepts in the ontology.

Fig. 4 depicts an ontology4 partially built using the coded and
evaluated AK concepts from Snippets 6 and 7. This ontology was
used for the industrial experiment reported in [5]. Note that
we only included AK concepts in this ontology that could later
be annotated in the subset of documents used in the experiment.
We did not include the other identified concepts such as ‘Change
task’, ‘Method’, ‘Device’, and ‘Stakeholder’.

We compared the identified AK concepts and relationships to
those in the Lightweight Software Ontology proposed by Tang et al.
in [22]. The Lightweight Software Ontology offers a starting point
or a template to help ontology engineers capture AK that is
commonly used. The AK concepts and relationships we identified
largely coincided with those in the Lightweight Software Ontology,

http://www.vanrijnswou.nl/owl/ontology.owl.xml


Fig. 4. AK ontology constructed in Océ software project domain.

K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–1064 1061
i.e., the ‘typical question’ approach was also able to identify
commonly used domain-independent AK.

We adopted concepts ‘Wikipage’ and ‘Diagram’, derived from
concept ‘DC’ (Dublin Core) in the Lightweight Software Ontology,
to enable ontology-based documentation in a semantic wiki tool.
The steps taken in the construction of the ontology in Fig. 4 are part
of a middle-out approach (see Section 2.3), combining a top-down
predefined ontology (i.e. the Lightweight Software Ontology) and
bottom-up acquisition of domain specific AK needs using the
‘typical question’ approach. 11 semantic relationships and 4
classes, appended with ‘‘(Océ)’’, in the ontology are Océ domain
specific. Concepts ‘Behavior’ and ‘Setting’ in this ontology have
specific semantics in the Océ product-domain.

The ontology was used to store the content of the file-based
documentation subset in the semantic wiki as wikipages. The
ontology classes and relationships were instantiated by semantic
annotation of AK in the SA documentation content in wikipages.

The semantic annotation of AK concepts, i.e. the documenta-
tion content itself, described above is not part of our ‘typical
question’ approach. We describe this to illustrate how the
constructed ontology was used as part of an ontology-based
documentation approach. Please see [5,23] for details on how the
ontology was populated with AK instances in a semantic wiki and
used in the experiment.

5.3. Ontology maintenance phase (step 6)

In the Océ case study we observed that the AK needs of users
shifted between software project phases. High-level AK about
product lines, changing independent of individual product
projects, is present in the documentation and can introduce shifts
in AK needs. Moreover, much product research and innovation
takes place in the R&D department of Océ, e.g., on hardware and
mechanical components. This introduces volatility of AK concepts.

Several months after previous steps were executed and
ontology-based SA documentation was implemented, we asked
a diverse group of documentation users to record their typical
questions about AK in a daily log (technique from Table 1). We
decided to use daily logs to acquire typical questions because
users were still quite accessible and committed and because it
gave a balanced trade-off between accuracy and efficiency of
AK needs acquisition. We acquired 39 typical questions from
9 documentation users, including 5 software engineers, 2 product
testers, 1 software architect and 1 project manager.

We collected daily logs during the build and integration phases
of the project in which ontology-based SA documentation was
implemented. New AK needs were acquired compared to the
known AK needs acquired at an earlier project phase. The daily logs
contained typical questions about software builds, releases,
planning, product-lines, control flow, physical products, and
automated tests. Considerably fewer typical questions about
change impact were acquired as compared to the typical questions
initially collected. Four examples of typical questions containing
new AK needs are given below in Snippet 8.

Snippet 8. Newly acquired typical questions at Océ:

� ‘‘I need to find AK on build XX from a different domain team

(but for the same product).’’

� ‘‘Is setting XX for device YY useful for product ZZ in product

line?’’

� ‘‘How is development tool XX used in offshore location YY?’’

� ‘‘Is state XX persistent? A test case fails on behavior YY.’’

5.4. Lessons learned

The case study gave us insight in how contextual factors
influenced the application of the ‘typical question’ approach in the
Océ project and whether the approach could be used to construct a
useful ontology.

� How do the contextual factors in this case study influence the

application of the ‘typical question’ approach?

The ‘typical question’ approach was used to acquire AK needs
for many diverse AK users (CF1 and CF4) in steps 1 and 6 of the
approach. The roles of these AK users include software engineers,
architects, project managers, and product testers. The time and
effort spent by the AK users was acceptable for them as they had



K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641062
spent around 5–10 min to type an email with typical questions or a
few minutes each day to record a typical question in their daily log.

AK users were not only able to phrase their own typical
questions in steps 1 and 6, but also evaluate the questions of other
AK users during steps 4 and 5 of the approach. Part of the typical
questions acquired in the case study were not only about AK but
also about detailed design and implementation details. We
observed that the amount of AK needed by AK users is influenced
by their role (CF4) and the software project phase in which typical
questions are acquired.

In the case study the researchers had good access to AK users
who were quick to help. AK users provided typical questions,
clarified AK needs, and evaluated the ontology. This commitment
also impacted the time and effort spent by AK users to phrase and
rephrase their typical questions, making sure they were relevant,
and consistently record them in a daily log. Accessibility (CF2) and
commitment (CF3) of AK users are regarded as preconditions for
the ‘typical question’ approach to work. However, our evaluation
(see Table 1) suggests that our approach can address low
accessibility by using an acquisition technique involving email
or mailing lists. A case study in a project where SA documentation
users have low accessibility would give insight in this, e.g., in
distributed development.

The diversity of AK users in terms of their roles (CF4) and
disciplines (CF6) was relevant and necessary for understanding
and aligning diverse AK concepts. Examples of this were the
interpretation of ‘setting’ between the tester and developer role
and the interpretation of ‘feature’ between users from engineering
and business disciplines. These conflicting interpretations were
detected and resolved using instantiated typical questions in steps
4 and 5 of the approach. As such, it appears advantageous to have
stakeholders in different roles to participate in evaluation.

We found that AK concepts that are specific to the product
domain (CF5) do not always show up in acquired typical questions.
The reason is that we asked the AK users to provide their typical
questions about architecture, and consequently the users did not
actively ask questions about background knowledge on the
product domain. Part of the product domain specific AK was
implicit or omitted in the typical questions. Therefore this
knowledge was not explicit in the constructed AK ontology.

Several months after the initial ontology was constructed, the
approach was used again to detect shifting AK needs in the same
project (CF7). We did observe shifting AK needs, but the meaning of
the classes and relationships remained the same (CF8). The typical
questions that we acquired from users in the initial execution of
step 1 in the approach did not cover the AK needed by users for
their later tasks. This means that if user tasks change frequently,
more ontology maintenance is needed.

� How well does the ‘typical question’ approach work in this case

study to construct a useful ontology for SA documentation?

In a questionnaire we asked five Océ professionals that are
users of AK to evaluate the ontology. This evaluation took place
after they used the ontology to retrieve AK from SA documenta-
tion in the experiment reported in [5]. We asked the five AK users
whether the ontology is a correct representation of reality. Three AK
users answered ‘‘yes’’ and two AK users answered ‘‘to a certain

extent’’. These two AK users remarked that the ontology should
include more printing machine domain knowledge.

Not all of the printing machine domain knowledge that was
identified was included in the evaluated ontology depicted in
Fig. 4. This is because the evaluated ontology was built for
annotating a subset of SA documentation. AK concepts that
were not described in this subset of SA documentation were
not included in the evaluated ontology. Moreover, we asked AK
users to provide typical questions about the architecture, not
about the product domain. As a result we cannot claim that our
approach is comprehensive for building a full ontology for all
possible AK needs.

All five Océ professionals confirmed in the questionnaire that they
found it practical to work with the ontology. Moreover, all five Océ
professionals found the ontology helpful to reason about what AK is
in SA documentation, and what AK should be in the SA documenta-
tion. This gives us confidence that the ‘typical question’ approach
worked well to construct a useful ontology in this case study.

The ontology constructed in the case study was used together
with a semantic wiki to construct ontology-based SA documenta-
tion for the experiment reported in [5]. 26 Océ professionals used
this ontology-based SA documentation to retrieve AK and their
efficiency and effectiveness was significantly higher than when
using file-based SA documentation to retrieve the same AK.

6. Related work

In this section we discuss how aspects of the ‘typical question’
approach for ontology engineering relate to aspects of other
ontology engineering approaches and how they differ.

Jansen et al. describe how they construct an ontology from
existing SA documentation in [8]. Researchers and a software
architect identified and annotated classes of AK in documentation
text, to elicit the AK needs in a documentation use case about
architectural reviews. Existing SA documentation and the use
case(s) may however not convey AK needs of all documentation
users. Moreover, annotating researchers or architects may not
know the interpretation of AK concepts and the AK needs of all
documentation users by heart.

Questions can be used to classify design artifacts in the
Zachman framework for enterprise architecture [24]. Typical
questions gathered in our approach are mostly asked from the
owner, designer, and builder perspective and from all abstractions
(what, how, where, who, when, and why) described in the
Zachman framework. Zachman argues from empirical observation
that design artifacts (e.g., product descriptions and engineering
documentation) can be classified by the users of these design
artifacts. In our approach the users of AK evaluate classifications of
AK concepts that are used to describe design artifacts.

In their TOVE enterprise modeling approach [25] Grüninger and
Fox make use of ‘competency questions’ for ontology evaluation.
Competency questions are considered ontology requirements and
are used to evaluate an ontology based on its ability to answer the
competency questions [25]. The notion of typical questions is
similar to that of competency questions. Competency questions are
however not refined and evaluated by users in order to construct
an ontology (introduce ontological commitments), as is done in our
approach with typical questions.

The On-To-Knowledge methodology [26] developed by Sure
et al. uses competency questions to add relations to an ontology. In
[27] Uschold and King however found competency questions to be
too specific to guide early ontology development. Moreover,
formalizing competency questions in first-order logic requires
different skills from an ontology engineer than those required in
the ‘typical question’ approach.

Acquisition of competency questions in these approaches is
different to the acquisition of typical questions in our approach.
For example, in the UPON methodology, proposed by Nicola et al.
in [28], competency questions are gathered using interviews with
domain experts, brainstorms and document analysis, whereas
direct acquisition of typical questions from all users is proposed in
our approach. Moreover, optimization of the efficiency and
accuracy of AK needs acquisition and evaluation is proposed in
our approach. This optimization is achieved by selecting different



K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–1064 1063
techniques for acquiring typical questions based on the commit-
ment and accessibility of users.

The DILIGENT methodology, described by Pinto et al. in [29],
focuses on distributed ontology development involving different
stakeholders, possibly in separate locations, with varying needs
and purposes. Ontology users can change an initial shared
domain ontology in their local environment according to their
needs. These users can then provide arguments for change
requests to a central board which makes decisions and judgments
on modeling of user needs and conflicting requirements. Similarly
users give feedback on ontology concepts in our approach. Our
approach however uses typical questions in the evaluation
process. Moreover, AK users in our approach not only evaluate
AK concepts needed by themselves but also those needed by
other AK users.

Kotis et al. describe their HCOME methodology in [30] in which
users collaborate to solve conflicting interpretations of concepts
in an ontology. HCOME allows ontology users to propose an
updated ontology by themselves. This relies on different skills of
ontology users as compared to our approach in which SA
documentation users need the skill to sharply phrase their typical
questions about AK.

7. Conclusions and future work

The use of ontology-based SA documentation can improve AK
descriptions and retrieval. The implementation of ontology-
based SA documentation requires acquisition and ontology
modeling of the AK needed by SA documentation users. In
software projects in industry it is important for organizations
and individual users that this is done efficiently and accurately.
For industry domains that are large, complex, and have many
diverse users, this becomes challenging.

We devised a ‘typical question’ approach to ontology construc-
tion for SA documentation in the context of a large and complex
software project. In this approach typical questions are used to
acquire a tangible representation of AK needs from SA documen-
tation users. AK concepts are identified from the typical questions
and modeled in an ontology using coding techniques from
Grounded Theory. Typical questions are also used for ontology
evaluation and to identify conflicting interpretations of AK
concepts between AK users working from different roles and
disciplines.

We described contextual factors that influence the construc-
tion of ontologies for SA documentation in software projects, e.g.,
the specificness of the product domain and the accessibility of AK
users. We found that the ‘typical question’ approach could be
applied to build an ontology for many diverse AK users in
the context of a large and complex software project. This is
reasonable since: (1) the ‘typical question’ approach is based on
the involvement of different roles (2) resolves conflicting
interpretations between roles and (3) supports different forms
of acquisition, e.g., interviews and emails, to handle different
levels of commitment and availability. AK users evaluating the
ontology all confirmed that the ontology was practical to work
with and most AK users confirmed it was a correct representation
of reality.

Our approach caters for changes in AK needs, however it cannot
prevent ontology maintenance as AK users mostly provide AK
needs for their current tasks. The frequency of such maintenance
depends on the frequency with which user tasks change.

These findings are based on a single case study of SA
documentation for software-intensive products. Our exploratory
case study was a first step to test if our ‘typical question’ approach
is suitable for gathering enough explicit product-specific domain
knowledge to produce an accurate AK ontology. We plan to do
additional case studies, to generalizing our findings beyond one
company and investigate if the ‘typical question’ approach can be
applied by industry professionals. A comparative study of the use
of other ontology engineering approaches, possibly combined with
ours, to gather AK needed for both current and future tasks of AK
users will be future work.

Acknowledgements

The authors wish to thank René Laan, Wim Couwenberg, Pieter
Verduin, Amar Kalloe, and the other good folks at Océ R&D for their
support, interest, participation, and excellent insights. This
research has been partially sponsored by the Dutch ‘‘Regeling
Kenniswerkers’’, project KWR09164, ‘‘Stephenson: Architecture
knowledge sharing practices in software product lines for print
systems’’ and by the Natural Science Foundation of China (NSFC)
project No. 61170025 ‘‘KeSRAD: Knowledge-enabled Software
Requirements to Architecture Documentation’’.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley Professional, 2012.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J. Stafford,
Documenting Software Architectures: Views and Beyond, Addison-Wesley, 2002.

[3] P. Lago, P. Avgeriou, First workshop on sharing and reusing architectural knowl-
edge, ACM SIGSOFT Softw. Eng. Notes 31 (5) (2006) 32–36.

[4] C. López, P. Inostroza, L.M. Cysneiros, H. Astudillo, Visualization and comparison
of architecture rationale with semantic web technologies, J. Syst. Softw. 82 (8)
(2009) 1198–1210.

[5] K.A. de Graaf, A. Tang, P. Liang, H. van Vliet, Ontology-based software architecture
documentation, in: Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA), IEEE, 2012,
121–130.

[6] M. Hepp, Possible ontologies: How reality constrains the development of relevant
ontologies, IEEE Internet Comput. 1 (1) (2007) 90–96.

[7] H.-J. Happel, S. Seedorf, Ontobrowse: a semantic wiki for sharing knowledge
about software architectures, in: Nineteenth International Conference on Soft-
ware Engineering & Knowledge Engineering (SEKE), 2007, 506–512.

[8] A. Jansen, P. Avgeriou, J.S. van der Ven, Enriching software architecture docu-
mentation, J. Syst. Softw. 82 (8) (2009) 1232–1248.

[9] C. López, V. Codocedo, H. Astudillo, L.M. Cysneiros, Bridging the gap between
software architecture rationale formalisms and actual architecture documents:
An ontology-driven approach, Sci. Comput. Prog. 77 (1) (2012) 66–80.

[10] M.T. Su, C. Hirsch, J. Hosking, Kaitorobase: visual exploration of software archi-
tecture documents, in: International Conference on Automated Software Engi-
neering (ASE), IEEE, 2009, 657–659.

[11] E.P.B. Simperl, C. Tempich, Ontology engineering: a reality check, in: On the move
to meaningful internet systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM
Confederated International Conferences, Springer LNCS, 2006, pp. 836–854.

[12] B.G. Glaser, A.L. Strauss, The Discovery of Grounded Theory, Weidenfeld and
Nicolson, 1967.

[13] A. Strauss, J. Corbin, Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd ed., Sage, 1998.

[14] C. Urquhart, W. Fernandez, Grounded theory method: the researcher as blank
slate and other myths, in: International Conference on Information Systems (ICIS),
2006, 457–464.

[15] S. Adolph, W. Hall, P. Kruchten, Using grounded theory to study the experience of
software development, Emp. Softw. Eng. 16 (4) (2011) 487–513.

[16] J.A. Dı́az-Pace, M. Nicoletti, S.N. Schiaffino, C. Villavicencio, L.E. Sanchez, A
stakeholder-centric optimization strategy for architectural documentation, in:
Proceedings of the 3rd International Conference on Model & Data Engineering
(MEDI), Springer LNCS, 2013, pp. 104–117.

[17] E. Turban, J.E. Aronson, Decision Support Systems and Intelligent Systems, 6th
ed., Prentice Hall, 2000.

[18] P. Kruchten, Contextualizing agile software development, J. Softw. Evol. Proc. 25
(4) (2013) 351–361.

[19] T. Bürger, E. Simperl, S. Wölger, S. Hangl, Using cost-benefit information
in ontology engineering projects, in: Context and Semantics for Knowledge
Management, Springer, 2011, pp. 61–90.

[20] Y. Sure, C. Tempich, D. Vrandecic, Ontology engineering methodologies, in:
Semantic Web Technologies: Trends and Research in Ontology-based Systems,
Wiley, UK, (2006), pp. 171–190.

[21] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Emp. Softw. Eng. 14 (2) (2009) 131–164.

[22] A. Tang, P. Liang, H. van Vliet, Software architecture documentation: The road
ahead, in: Working IEEE/IFIP Conference on Software Architecture (WICSA), IEEE,
2011, 252–255.

http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0005
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0005
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0010
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0010
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0015
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0015
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0020
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0020
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0020
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0025
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0025
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0025
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0025
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0030
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0030
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0035
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0035
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0035
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0040
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0040
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0045
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0045
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0045
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0050
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0050
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0050
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0055
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0055
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0055
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0060
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0060
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0065
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0065
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0070
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0070
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0070
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0075
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0075
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0080
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0080
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0080
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0080
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0085
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0085
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0090
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0090
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0095
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0095
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0095
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0100
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0100
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0100
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0105
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0105
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0110
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0110
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0110


K.A. de Graaf et al. / Computers in I1064
[23] K.A. de Graaf, Annotating software documentation in semantic wikis, in: Fourth
workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR),
ACM, 2011, pp. 5–6.

[24] J. Zachman, The Zachman Framework for Enterprise Architecture, Zachman
International, 2002.

[25] M. Grüninger, M.S. Fox, Methodology for the Design and Evaluation of Ontologies,
International Joint Conference on Artificial Intelligence (IJCAI), Workshop on Basic
Ontological Issues in Knowledge Sharing, 1995.

[26] Y. Sure, S. Staab, R. Studer, On-to-knowledge methodology (OTKM), in: Handbook
on Ontologies, Springer, 2004, pp. 117–132.

[27] M. Uschold, M. King, Towards a methodology for building ontologies, Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Workshop on Basic
Ontological Issues in Knowledge Sharing, 1995.

[28] A.D. Nicola, M. Missikoff, R. Navigli, A proposal for a unified process for ontology
building: Upon, in: Database and Expert Systems Applications – DEXA, Springer
LNCS, 2005, pp. 655–664.

[29] H. Pinto, S. Staab, C. Tempich, Y. Sure, Distributed engineering of ontologies
(diligent), in: Semantic Web and Peer-to-Peer, Springer LNCS, Springer LNCS,
2006, pp. 303–322.

[30] K. Kotis, G. Vouros, Human-centered ontology engineering: the HCOME meth-
odology, Knowl. Inform. Syst. 10 (1) (2006) 109–131.

K.A. de Graaf is a Ph.D. student in the Software
Engineering research group, Department of Computer
Sciences, at VU University Amsterdam in The
Netherlands. He received his master degree in Com-
puter Science from VU University. His research interests
include software architecture, software documenta-
tion, knowledge engineering, and reliability prediction.

P. Liang is a professor of Software Engineering in the
State Key Lab of Software Engineering (SKLSE), School of
Computer, Wuhan University, China. He is currently a
visiting researcher at VU University Amsterdam, the
Netherlands. Between 2007 and 2009, he was a post-
doctoral researcher at the Software Engineering and
Architecture (SEARCH) research group at the University
of Groningen, the Netherlands. He is a young associate
editor of the journal Frontiers of Computer Science. His
research interests concern the area of software
architecture and requirements engineering. He has
published more than 60 articles in peer-reviewed
international journals, conference and workshop pro-
ceedings, and books.
A. Tang received the Ph.D. degree in information
technology from the Swinburne University of Technol-
ogy. He is an associate professor in Swinburne
University of Technology’s Faculty of Science, Engi-
neering and Technology. Prior to being a researcher, he
had spent many years designing and developing
software systems. His research interests include
software architecture design reasoning, software de-
velopment processes, software architecture and knowl-
edge engineering. He is a member of the ACM and the
IEEE.

Dr. W.R. van Hage (Ph.D. TNO/VU University Amster-
dam, 2009) is Chief Data Scientist at SynerScope B.V.
and guest researcher at the VU University Amsterdam
in the field of interdisciplinary e-Science and Web
Science. His main research topics in the past 10 years
are augmented sense making, visual analytics, infor-
mation integration, and semantics. He is principal
investigator in the US ONRG funded SAGAN and
COMBINE projects and work package leader in the EU
FP7 project NewsReader and the Dutch BSIK COMMIT
Metis and Data2Semantics projects, all dealing with
knowledge extraction and Linked Data visualization. He
is a co-organizer of the LISC and DeRiVE workshop
series; the Ontology Alignment Evaluation Initiative

(OAEI); and the Linked Science Tutorial series about improving the speed, efficiency
and transparency of Web research. He has developed the Simple Event Model
(SEM), an OWL ontology for the description of event data; spatiotemporal indexing
for SWI-Prolog (awarded with a best paper award at the EKAW 2010 conference),
and the SPARQL package for the R statistical programming language.

H. van Vliet is Professor in Software Engineering at the
VU University Amsterdam, The Netherlands, since
1986. He got his PhD from the University of Amsterdam.
His research interests include software architecture,
knowledge management in software development,
global software development, and empirical software
engineering. Before joining the VU University, he
worked as a researcher at the Centrum voor Wiskunde
en Informatica (CWI, Amsterdam). He spent a year as a
visiting researcher at the IBM Almaden Research Center
in San Jose, CA. He is the author of ‘‘Software
Engineering: Principles and Practice’’, published by
Wiley (3rd edition, 2008). He is a member of IFIP
Working Group 2.10 on software architecture, and the
Editor in Chief of the Journal of Systems and Software.

ndustry 65 (2014) 1053–1064

http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0115
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0115
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0115
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0120
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0120
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0125
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0125
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0125
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0130
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0130
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0135
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0135
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0135
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0140
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0140
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0140
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0145
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0145
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0145
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0150
http://refhub.elsevier.com/S0166-3615(14)00084-0/sbref0150

	An exploratory study on ontology engineering for software architecture documentation
	Introduction
	Background
	Ontology-based SA Documentation
	Ontology engineering for SA documentation
	Knowledge acquisition
	Grounded Theory

	Ontology engineering using the ‘typical question’ approach
	Domain analysis phase (step 1)
	Conceptualization and Evaluation Phase (Steps 2-5)
	Ontology maintenance phase (step 6)

	Contextual factors in ontology engineering
	Contextual factors influencing the acquisition of typical questions
	Contextual factors in the domain analysis phase
	Contextual factors in the conceptualization and evaluation phase
	Contextual factors in the maintenance phase

	An exploratory case study of ontology engineering for SA documentation
	Domain analysis phase (step 1)
	Conceptualization and evaluation phase (steps 2-5)
	Ontology maintenance phase (step 6)
	Lessons learned

	Related work
	Conclusions and future work
	Acknowledgements
	References


